中国神经再生研究(英文版) ›› 2016, Vol. 11 ›› Issue (8): 1212-1215.doi: 10.4103/1673-5374.189166

• 综述:神经损伤修复保护与再生 • 上一篇    下一篇

小胶质细胞激活后的自动计数:为恢复神经保护疗法提供数据

  

  • 出版日期:2016-08-31 发布日期:2016-08-31
  • 基金资助:

    研究由OFTARED眼科网络(预防,早期发现和治疗眼病多见退行性变RD12-0034/0002),西班牙经济卫生部卡洛斯三世研究所资助。这项工作得到了国家研究资助+ D +2008 - 2011,网络的ISCIII,董秘局和合作研究中心,由欧洲计划ERDF,并通过SAF2014-53779- R:神经炎症青光眼:胶质细胞和血 - 视网膜屏障受损的测序。在PLGA微粒封装为神经保护治疗(经济与竞争力的西班牙外交部)的NSAID的作用。 BSP0529-13:这项工作是由通过Bisgrove计划,批准号亚利桑那州的当代科学基金会的支持。

Automatic counting of microglial cell activation and its applications

Beatriz I. Gallego Collado1, 2, *, #, Pablo de Gracia3, 4, *, #   

  1. 1 Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, Spain 2 Facultad de óptica y Optometría, Departamento de Oftalmología y Otorrinolaringología, Universidad Complutense de Madrid, Madrid, Spain 3 Midwestern University, Chicago College of Optometry, Downers Grove, IL, USA 4 Department of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
  • Online:2016-08-31 Published:2016-08-31
  • Contact: Beatriz I. Gallego Collado, O.D., Ph.D. or Pablo de Gracia, O.D., Ph.D., F.A.A.O., bgallegocollado@gmail.com or pdegracia@midwestern.edu Both of these two authors contributed equally to this article.
  • Supported by:
    This work was supported by the Science Foundation of Arizona through the Bisgrove Program to PdG, Grant Number: BSP 0529-13. BIG received funding from the Ophthalmological Network OFTARED (RD12-0034/0002) and the Institute of Health Carlos III. And also from the PN I+D+i 2008–2011, from the ISCIII-Subdireccion General de Redes y Centros de Investigación Cooperativa, from the European Programme FEDER, and from the project SAF2014-53779-R. BIG also received funding from the project: “The role of encapsulated NSAIDs in PLGA microparticles as a neuroprotective treatment” funded by the Spanish Ministry of Economy and Competitiveness.

摘要:

青光眼是一种慢性视神经病变,特征为视网膜神经节细胞的神经元死亡。在一些情况下,该疾病进展无法停止,而其他严重损伤在得到明确诊断时就已经发生了。因此,了解青光眼的发病机制,并制定早期诊断的新策略是尤其重要的。胶质细胞激活似乎在青光眼神经变性中发挥重要作用。胶质细胞是神经系统中的非神经元细胞,为神经元提供支持和保护。早,中,和暂态控制良好的胶质激活可能最初负责受修复受损组织。然而,发生在人类青光眼组织的持续应激与胶质细胞慢性活化有关,会造成有害神经炎症过程发生,进而导致组织损伤。前者支持论点,即在青光眼神经变性中的胶质细胞可以发起免疫应答,因而可能加剧青光眼的神经变性损伤。研究观察到的重要发现为,是否发生神经元死亡均有小胶质细胞的增殖,所以小胶质细胞定量研究可以帮助检测早期和潜在征兆或者与神经退行性疾病相关的事件。此外,小胶质细胞的数量也可以作为恢复神经保护疗法应用在之后的研究中。需要大量研究收集有力证据充分了解青光眼的病因,并制定治疗。在这一点上,小胶质细胞算法的提出,为研究人员提供了快速,准确的图像大型数据集的有用工具。

orcid: 0000-0001-9864-3140 (Beatriz I. Gallego Collado) 0000-0003-4319-279 (Pablo de Gracia) 

Abstract: Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientifc efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability.

Key words: glaucoma, glial cells, microglial cells, automatic counting, image processing, inner plexiform layer, outer plexiform layer, bilateral activation