中国神经再生研究(英文版) ›› 2017, Vol. 12 ›› Issue (1): 19-22.doi: 10.4103/1673-5374.198966

• 综述:脑损伤修复保护与再生 • 上一篇    下一篇

外来细胞及生物材料合成体治疗创伤性脑损伤的新潜力

  

  • 收稿日期:2016-12-30 出版日期:2017-01-15 发布日期:2017-01-15
  • 基金资助:

    研究由美国国家卫生研究院国家神经性疾病和脑卒中研究所RO1 NS088656(MC)支持。

Emerging potential of exosomes for treatment of traumatic brain injury

Ye Xiong1, *, Asim Mahmood1,  Michael Chopp2, 3   

  1. 1. Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA;
    2. Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; 
    3. Department of Physics, Oakland University, Rochester, MI, USA
  • Received:2016-12-30 Online:2017-01-15 Published:2017-01-15
  • Contact: Ye Xiong, M.D., Ph.D., yxiong1@hfhs.org.
  • Supported by:

    This work was supported by National Institute of Neurological Disorders and Stroke (NINDS) of the National Institutes of Health under award number RO1 NS088656 (MC). The content is solely the responsibility of the authors and does not the necessarily represent the official views of the National Institutes of Health.

摘要:

 

创伤性脑损伤是导致全球死亡和残疾的主要原因之一。最新的临床前数据表明针对多个实质细胞的恢复性治疗能够分别增强TBI诱导的血管生成、神经发生、轴突生长和少突神经发生,这些细胞包括脑内皮细胞、神经干细胞/祖细胞和少突细胞祖细胞。这些交互神经重塑事件会相互影响协调从而提高创伤性脑损伤后的神经功能。所以迫切需要开发设计针对刺激神经可塑性的新型疗法,以期能促进创伤性脑损伤之后的神经恢复。使用骨髓源性间充质干细胞的细胞疗法在再生药物领域很有前景,并已有证据表示其能治疗多种疾病,包括创伤性脑损伤。在选择性靶向受损组织外源性施用间充质干细胞,并与脑实质细胞相互作用,可以减少轴突抑制分子的表达,刺激生长和可塑性阳性因子的产生,其能增强神经突生长,促进神经恢复和脑损伤后的神经功能恢复。对于外来体在转化再生医学中的现有和下一步的研究将会确定(腹侧和边缘效应)创伤性脑损伤后促进功能恢复的外来体机制。最大化间充质干细胞产生的外来体;鉴定用于产生外来体的细胞最佳来源,并确定供体细胞的年龄和性别对外来体生成和内容物的潜在影响;改进外来体的分离程序;定义最佳剂量和治疗时间窗以及潜在的施用途径;鉴定外来体内容物;修饰用于靶向治疗的外来体内含物;开发外来体药物递送系统,使其可以穿过血脑屏障并促进药物渗透到脑中; 通过开发和完善三维培养方法,如支架或组织工程模型、细胞球体和微载体培养制造外来体制备;监测潜在的不利影响,并将这些研究转化为TBI和其他疾病的治疗策略。

 

ORCID:0000-0001-9770-6031(Ye Xiong)

Abstract:

Traumatic brain injury (TBI) is one of the major causes of death and disability worldwide. No effective treatment has been identified from clinical trials. Compelling evidence exists that treatment with mesenchymal stem cells (MSCs) exerts a substantial therapeutic effect after experimental brain injury. In addition to their soluble factors, therapeutic effects of MSCs may be attributed to their generation and release of exosomes. Exosomes are endosomal origin small-membrane nano-sized vesicles generated by almost all cell types. Exosomes play a pivotal role in intercellular communication. Intravenous delivery of MSC-derived exosomes improves functional recovery and promotes neuroplasticity in rats after TBI. Therapeutic effects of exosomes derive from the exosome content, especially microRNAs (miRNAs). miRNAs are small non-coding regulatory RNAs and play an important role in posttranscriptional regulation of genes. Compared with their parent cells, exosomes are more stable and can cross the blood-brain barrier. They have reduced the safety risks inherent in administering viable cells such as the risk of occlusion in microvasculature or unregulated growth of transplanted cells. Developing a cell-free exosome-based therapy may open up a novel approach to enhancing multifaceted aspects of neuroplasticity and to amplifying neurological recovery, potentially for a variety of neural injuries and neurodegenerative diseases. This review discusses the most recent knowledge of exosome therapies for TBI, their associated challenges and opportunities.

Key words: traumatic brain injury, exosomes, microRNAs, mesenchymal stem cells, treatment, neuroplasticity, cell therapy