中国神经再生研究(英文版) ›› 2017, Vol. 12 ›› Issue (1): 23-26.doi: 10.4103/1673-5374.198967

• 综述:神经损伤修复保护与再生 • 上一篇    下一篇

计算机脑模型:解读新生儿神经递质系统破坏与癫痫

  

  • 收稿日期:2017-01-16 出版日期:2017-01-15 发布日期:2017-01-15
  • 基金资助:

    此研究得到计算流体力学研究公司(CFDRC)根据国防部,卫生部资助分包合同提供的支持W81XWH-14-C-0045。这项工作部分由国家科学基金会仪器拨款支持OCI-0821527。

A new computational approach for modeling diffusion tractography in the brain

Harsha T. Garimella, Reuben H. Kraft*   

  1. Department of Mechanical and Nuclear Engineering, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
  • Received:2017-01-16 Online:2017-01-15 Published:2017-01-15
  • Contact: Reuben H. Kraft, Ph.D., reuben.kraft@psu.edu.
  • Supported by:

    The authors gratefully acknowledge the support provided by Computational Fluid Dynamics Research Corporation (CFDRC) under a sub-contract funded by the Department of Defense, Department of Health Program through contract W81XWH-14-C-0045.

摘要:

 

设计、优化和应用神经再生技术的一个方面是对需要再生的潜在损伤或疾病有良好的理解。实现这种水平的理解的一种可能方式是通过使用“计算机脑模型”研究损伤或疾病。计算机脑模型的类型根据研究范围的实际变化而变化。例如,生物力学建模解决了牛顿第二定律,使用连续体力学,主要目的是了解外力如何通过以及可能穿过某些损伤阈值的组织,而计算机神经科学中的模型通常解决霍奇金 - 赫克斯利方程组模型在连接到网络中的单个神经元中的信号传播。使用建模的其他领域包括神经药理学、脑癌建模、机械生物学、神经疾病、行为建模和血管系统建模。然而,在这些领域中使用的所有建模都存在桥接长度和时间尺度的问题,范围从整个脑器官到细胞或亚细胞状态。我们在最新的论文中所描述的方法为在脑中轴索束采用嵌入式元素方法计算模型,并提出该方法可以帮助我们桥梁长度尺度,从而提供连接所有这些不同建模方法的可能关键。在这篇文章中,我们将分享一些关于此种方法的观点。

 

ORCID:0000-0003-3084-1989 (Harsha T. Garimella)

Abstract:

Computational models provide additional tools for studying the brain, however many techniques are currently disconnected from each other. There is a need for new computational approaches that span the range of physics operating in the brain. In this review paper, we offer some new perspectives on how the embedded element method can fill this gap and has the potential to connect a myriad of modeling genre. The embedded element method is a mesh superposition technique used within finite element analysis. This method allows for the incorporation of axonal fiber tracts to be explicitly represented. Here, we explore the use of the approach beyond its original goal of predicting axonal strain in brain injury. We explore the potential application of the embedded element method in areas of electrophysiology, neurodegeneration, neuropharmacology and mechanobiology. We conclude that this method has the potential to provide us with an integrated computational framework that can assist in developing improved diagnostic tools and regeneration technologies.

Key words: embedded elements, finite element analysis, computational biomechanics, explicit axonal fiber tracts, neural regeneration, diffusion tractography