中国神经再生研究(英文版) ›› 2017, Vol. 12 ›› Issue (5): 696-701.doi: 10.4103/1673-5374.206632

• 综述:脑损伤修复保护与再生 • 上一篇    下一篇

缺氧诱导因子-1α稳定用于创伤性脑损伤的再生治疗

  

  • 收稿日期:2017-05-02 出版日期:2017-05-15 发布日期:2017-05-15
  • 基金资助:

     

    VA优异奖(RX2090和BX3401)赞助

Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

Mushfiquddin Khan1, Hamza Khan2, Inderjit Singh1, Avtar K. Singh3, 4   

  1. 1 Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; 2 College of Medicine, University of South Carolina, Columbia, SC, USA; 3 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; 4 Ralph H. Johnson VA Medical Center, Charleston, SC, USA
  • Received:2017-05-02 Online:2017-05-15 Published:2017-05-15
  • Contact: Mushfiquddin Khan, Ph.D., khanm@musc.edu.
  • Supported by:

    This work was supported by grants from VA merit awards (BX3401 and RX2090).

摘要:

 

大约40%的创伤性脑损伤属于挫伤;因此,使用焦点大脑皮质控制(CCI)技术的创伤性脑损伤动物模型被认为与人类创伤性脑损伤的生理学相关。CCI提供了一个动物模型系统来评估急性和慢性期损伤。两个阶段的损伤机制是不同并且复杂的。虽然CCI在急性期导致显著数量的坏死性和凋亡性神经元,但缺乏足够的神经修复过程刺激。通过神经营养和生长因子刺激神经修复活动,通过治疗方式,已显示了改善运动和认知功能的效果。文中研究表明,S-亚硝基谷胱甘肽(GSNO)诱导的机制稳定缺氧诱导因子-1α(HIF-1α),可以刺激创伤性脑损伤中再生和功能恢复的机制。其他实验室的研究也报道了创伤性脑损伤后的神经修复机制依赖于HIF-1α活性。

HIF-1α及其降解酶(包括脯氨酰-4-羟化酶(PHD))通过S-亚硝基化直接调节,诱导HIF-1α稳定和修复期神经修复机制。研究还报道了S-亚硝基化介导的HIF-1α稳定化可增加血管生成和心肌保护,这表明S-亚硝基化的HIF-1α具有保护作用。因此,我们研究了S-亚硝基化介导的HIF-1α调节是否可诱导神经修复,进而引发创伤性脑损小鼠CCI模型的功能恢复。

ORCID:0000-0001-7945-3237(Mushfiquddin Khan)

Abstract:

Mild traumatic brain injury (TBI), also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO), the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α), a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO) and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.

Key words: traumatic brain injury, hypoxia inducible factor-1 alpha, S-nitrosoglutathione, neurorepair, functional recovery