中国神经再生研究(英文版) ›› 2017, Vol. 12 ›› Issue (8): 1210-1219.doi: 10.4103/1673-5374.213533

• 综述:视神经损伤修复保护与再生 • 上一篇    下一篇

活细胞成像–研究视网膜再生的新方法

  

  • 收稿日期:2017-07-20 出版日期:2017-08-15 发布日期:2017-08-15
  • 基金资助:

    此项研究得到了美国国立卫生研究院-NEI(R01-EY018417, R01-EY024519)和美国圣母大学斑马鱼研究中心的赞助支持

 Live-cell imaging: new avenues to investigate retinal regeneration

Manuela Lahne, David R. Hyde   

  1. Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
  • Received:2017-07-20 Online:2017-08-15 Published:2017-08-15
  • Contact: David R. Hyde, Ph.D.,dhyde@nd.edu.
  • Supported by:

    This work was supported by NIH-NEI grants to DRH (R01-EY018417, R01-EY024519) and the Center for Zebrafish Research, University of Notre Dame, USA.

摘要:

感知和对周围环境做出反应需要功能性神经元协调作用。人类发生退行性疾病时,丢失的神经元细胞不能被替代,导致功能障碍。相比之下,斑马鱼(Danio rerio)具有再生丢失神经元的内再能力。文中研究将专注于斑马鱼视网膜神经元再生的过程。死亡的视网膜神经元释放损伤信号--TNFα,其引起放射性胶质细胞,Müller胶质细胞,重新编程并重新进入细胞周期。Müller胶质细胞不对称地分裂,产生离开细胞周期的胶质细胞和神经祖细胞(NPC)。所产生的NPC在迁移到损伤部位之前经历几轮细胞分裂,以分化为丢失的神经元细胞类型。分子和免疫组织化学研究主要提供了对调节视网膜再生机制的意见。然而,视网膜再生过程中的许多过程是动态的,并且需要活细胞成像来完全辨别潜在机制。最近,我们开发了成人斑马鱼视网膜培养物的多光子成像方法。文章讨论了活细胞成像的使用提高人们对视网膜再生领域主要问题的认识。

orcid:0000-0003-0198-4403(David R. Hyde)

Abstract:

Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish (Danio rerio) possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was
developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.

Key words: multiphoton microscopy, live-cell imaging, zebrafish, interkinetic nuclear migration, tissue culture, retinal regeneration, Müller glia, neuronal progenitor cell, differentiation, phagocytosis