中国神经再生研究(英文版) ›› 2018, Vol. 13 ›› Issue (11): 2022-2024.doi: 10.4103/1673-5374.238719

• 影像图片 • 上一篇    

脑室内出血后受损下背侧网状激活系统的恢复

  

  • 收稿日期:2018-07-11 出版日期:2018-11-15 发布日期:2018-11-15
  • 基金资助:

    该研究由基础科学研究计划通过由教育,科学和技术部(NRF-2015R1D1A1A01060314)资助的韩国国家研究基金会(NRF)支持

Restoration of an injured lower dorsal ascending reticular activating system in a patient with intraventricular hemorrhage

 Sung Ho Jang1, Sang Seok Yeo2   

  1. 1 Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea;
    2 Department of Physical Therapy, College of Health Sciences, Dankook University, Cheonan, Republic of Korea
  • Received:2018-07-11 Online:2018-11-15 Published:2018-11-15
  • Contact: Sang Seok Yeo, PhD, eangbul@hanmail.net
  • Supported by:

    This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF- 2015R1D1A1A01060314). The funding body played no role in the study conception design, in the collection, analysis and inter pretation of data, in the preparation and writing of the report, and in the decision to submit the article for publication.

摘要:

 上行网状激活系统(ARAS)在控制唤醒和意识意识方面起着关键作用。众所周知,ARAS起源于脑干的网状结构(RF),并通过丘脑,下丘脑的内层核(ILN)和大脑皮质的直接通路连接到大脑皮质。下丘脑涉及睡眠和意识的调节。ILN与皮质和皮质下区域的觉醒有关。因此,精确评估ARAS的每个组成部分对于评估和干预唤醒或意识障碍患者非常重要。然而,ARAS中每条途径对意识调节的确切责任仍然是一个令人感兴趣和关注的话题。

扩散张量纤维束成像术(DTT)已经能够重建ARAS的每个组成部分。因此,最近几项使用DTT的研究报道了脑损伤患者的ARAS损伤。然而,关于受伤的ARAS的恢复或恢复知之甚少。
此次使用DTT,作者报道了1例脑室内出血(IVH)患者表现出网状结构(RF)和椎板内核(ILN)之间受损的下背网状激活系统(ARAS)的恢复。

患者为1例50岁的女性,采用右额入路引导脑室内血肿的立体定向引流。发病4周后,患者上肢和下肢出现轻度认知功能障碍和轻度运动无力,但未显示意识障碍,格拉斯哥昏迷量表评分为15.下腹侧和背侧ARAS和ILN连通性使用DTT重建。患者和6名正常对照受试者的分数各向异性(FA),平均扩散系数(MD)和束体积(TV)。4周的DTT显示,患者双侧下背侧ARAS的TV值降低超过正常对照组的2个标准偏差。然而,在4个月的DTT中,两个半球的TV值显示出显着的增加,并且这些值在正常对照受试者的两个标准偏差内。相反,下腹侧ARAS的DTT参数和ILN的连接性与正常对照受试者的相似。我们证实了具有完整的意识的IVH患者受损的下背侧ARAS的恢复。由此认为对ARAS进行DTT检查可用于评估脑损伤后的意识障碍。

orcid: 0000-0003-3873-9516 (Sang Seok Yeo)

 

Abstract:

The ascending reticular activating system (ARAS) plays a key role in the control of arousal and awareness for consciousness. It is well known that the ARAS originates from the reticular formation (RF) of the brainstem, and connects to the cerebral cortex via intralaminar nuclei (ILN) of thalamus, hypothalamus and direct pathways to the cerebral cortex. The hypothalamus is involved in the regulation of sleep and awareness which is associated with the main timekeeper of consciousness. By contrast, ILN is related to arousal of cortical and subcortical regions. Therefore, precise evaluation of each component of the ARAS is important for assessment and intervention of patients with impaired arousal or awareness. However, exact responsibility of each pathway of the ARAS in the regulation of consciousness remains a topic of interest and concern.