中国神经再生研究(英文版) ›› 2020, Vol. 15 ›› Issue (4): 759-768.doi: 10.4103/1673-5374.266923

• 原著:脑损伤修复保护与再生 • 上一篇    

人工基质中神经母细胞瘤细胞发展成的3D小世界网络

  


  • 出版日期:2020-04-15 发布日期:2020-05-29

Small-world networks of neuroblastoma cells cultured in three-dimensional polymeric scaffolds featuring multi-scale roughness

Valentina Onesto1, Angelo Accardo2, Christophe Vieu2, 3, Francesco Gentile4   

  1. 1 Center for Advanced Biomaterials for Healthcare, Italian Institute of Technology, Naples, Italy
    2 Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), Centre National de la Recherche Scientifique, Université de Toulouse, CNRS, Toulouse, France
    3 Institut National des Sciences Appliquées – INSA, Toulouse, France
    4 Department of Electric Engineering and Information Technology, University Federico II, Naples, Italy
  • Online:2020-04-15 Published:2020-05-29
  • Contact: Francesco Gentile, PhD,francesco.gentile2@unina.it.

摘要:

理解细胞-表面相互作用的机制对于针对组织工程、组织修复和神经再生应用支架的合理设计是至关重要的。实验对双光子光刻获得的三维聚合物支架中培养的神经母细胞瘤细胞模式进行了研究。由于该技术的固有分辨率,构成支架的微米圆柱体具有约200nm的径向尺寸,约20nm的表面粗糙度,以及接近2.7的大分形维数值。支架中的细胞组成了不同的组,每组有许多元素。在细胞布线之后,所得到的网络表现出高聚类、小路径长度和小世界特征。与相同大小的等效随机图相比,这些网络拓扑特征值可以潜在地提高网络中传输信息的质量、数量和密度。研究首次观察到人工基质中的神经母细胞瘤细胞发展成3D小世界网络。

orcid: 0000-0002-1724-6301 (Francesco Gentile)

关键词: 三维网络, 生物材料, 网络拓扑结构, 纳米形貌, 神经再生, 小世界网络, 组织工程, 双光子光刻

Abstract: Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational design of scaffolds aiming at tissue engineering, tissue repair and neural regeneration applications. Here, we examined patterns of neuroblastoma cells cultured in three-dimensional polymeric scaffolds obtained by two-photon lithography. Because of the intrinsic resolution of the technique, the micrometric cylinders composing the scaffold have a lateral step size of ~200 nm, a surface roughness of around 20 nm, and large values of fractal dimension approaching 2.7. We found that cells in the scaffold assemble into separate groups with many elements per group. After cell wiring, we found that resulting networks exhibit high clustering, small path lengths, and small-world characteristics. These values of the topological characteristics of the network can potentially enhance the quality, quantity and density of information transported in the network compared to equivalent random graphs of the same size. This is one of the first direct observations of cells developing into 3D small-world networks in an artificial matrix.

Key words: 3D networks, biomaterials, nano-topography, network topology, neuro-regeneration, small-world networks, tissue engineering, two-photon lithography