中国神经再生研究(英文版) ›› 2020, Vol. 15 ›› Issue (5): 824-827.doi: 10.4103/1673-5374.268896

• 综述:脑损伤修复保护与再生 • 上一篇    下一篇

阿尔茨海默病,神经干细胞和神经发生:单细胞水平上研究细胞期

  

  • 出版日期:2020-05-15 发布日期:2020-05-30

Alzheimer’s disease, neural stem cells and neurogenesis: cellular phase at single-cell level

Mehmet Ilyas Cosacak1, Prabesh Bhattarai1, Caghan Kizil1, 2   

  1. 1 German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
    2 Center for Molecular and Cellular Bioengineering (CMCB), CRTD, TU Dresden, Dresden, Germany
  • Online:2020-05-15 Published:2020-05-30
  • Contact: Caghan Kizil, PhD,caghan.kizil@dzne.de.
  • Supported by:
    This work was supported by Helmholtz Association (Helmholtz Young Investigator Award), Deutsche Forschungsgemeinschaft (DFG), German Center for Neurodegenerative Diseases (DZNE), and TU Dresden (all to CK).

摘要: orcid: 0000-0002-8164-9762 (Caghan Kizil)

Abstract: Alzheimer’s disease cannot be cured as of yet. Our current understanding on the causes of Alzheimer’s disease is limited. To develop treatments, experimental models that represent a particular cellular phase of the disease and more rigorous scrutiny of the cellular pathological mechanisms are crucial. In recent years, Alzheimer’s disease research underwent a paradigm shift. According to this tendency, Alzheimer’s disease is increasingly being conceived of a disease where not only neurons but also multiple cell types synchronously partake to manifest the pathology. Knowledge on every cell type adds an alternative approach and hope for the efforts towards the treatment. Neural stem cells and their neurogenic ability are making an appearance as a new aspect of the disease manifestation based on the recent findings that neurogenesis reduces dramatically in Alzheimer’s disease patients compared to healthy individuals. Therefore, understanding how neural stem cells can form new neurons in Alzheimer’s disease brains holds an immense potential for clinics. However, this provocative idea requires further evidence and tools for investigation. Recently, single cell sequencing appeared as a revolutionary tool to understand cellular programs in unprecedented resolution and it will undoubtedly facilitate comprehensive investigation of different cell types in Alzheimer’s disease. In this mini-review, we will touch upon recent studies that use single cell sequencing for investigating cellular response in Alzheimer’s disease and some consideration pertaining to the utilization of neural regeneration for Alzheimer’s disease research.

Key words: Alzheimer’s disease, mouse, neural regeneration, neural stem cell, neurogenesis, neuron, single cell sequencing, zebrafish