中国神经再生研究(英文版) ›› 2020, Vol. 15 ›› Issue (8): 1397-1407.doi: 10.4103/1673-5374.274326

• 综述:脊髓损伤修复保护与再生 • 上一篇    下一篇

脊髓损伤后的电刺激与失神经肌肉

  

  • 出版日期:2020-08-15 发布日期:2020-09-17

Electrical stimulation and denervated muscles after spinal cord injury

Subhalakshmi Chandrasekaran1 , John Davis1 , Ines Bersch2, 3, Gary Goldberg4, 5, Ashraf S. Gorgey1, 4, *   

  1. 1 Spinal Cord Injury and Disorders, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA 2 Swiss Paraplegic Centre, Nottwil, Switzerland 3 Institute of Clinical Sciences, Department of Orthopedics at the University of Gothenburg, Gothenburg, Sweden 4 Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA 5 Electrodiagnostic Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
  • Online:2020-08-15 Published:2020-09-17
  • Contact: Ashraf S. Gorgey, MPT, PhD, FACSM, ashraf.gorgey@va.gov.

摘要: orcid: 0000-0002-9157-6034 (Ashraf S. Gorgey)

Abstract: Spinal cord injury (SCI) population with injury below T10 or injury to the cauda equina region is characterized by denervated muscles, extensive muscle atrophy, infiltration of intramuscular fat and formation of fibrous tissue. These morphological changes may put individuals with SCI at higher risk for developing other diseases such as various cardiovascular diseases, diabetes, obesity and osteoporosis. Currently, there is no available rehabilitation intervention to rescue the muscles or restore muscle size in SCI individuals with lower motor neuron denervation. We, hereby, performed a review of the available evidence that supports the use of electrical stimulation in restoration of denervated muscle following SCI. Long pulse width stimulation (LPWS) technique is an upcoming method of stimulating denervated muscles. Our primary objective is to explore the best stimulation paradigms (stimulation parameters, stimulation technique and stimulation wave) to achieve restoration of the denervated muscle. Stimulation parameters, such as the pulse duration, need to be 100–1000 times longer than in innervated muscles to achieve desirable excitability and contraction. The use of electrical stimulation in animal and human models induces muscle hypertrophy. Findings in animal models indicate that electrical stimulation, with a combination of exercise and pharmacological interventions, have proven to be effective in improving various aspects like relative muscle weight, muscle cross sectional area, number of myelinated regenerated fibers, and restoring some level of muscle function. Human studies have shown similar outcomes, identifying the use of LPWS as an effective strategy in increasing muscle cross sectional area, the size of muscle fibers, and improving muscle function. Therefore, displaying promise is an effective future stimulation intervention. In summary, LPWS is a novel stimulation technique for denervated muscles in humans with SCI. Successful studies on LPWS of denervated muscles will help in translating this stimulation technique to the clinical level as a rehabilitation intervention after SCI.

Key words: denervation, DXA, electrical stimulation, LMN injury, LPWS, MRI, spinal cord injury, stimulation parameters