中国神经再生研究(英文版) ›› 2021, Vol. 16 ›› Issue (11): 2229-2231.doi: 10.4103/1673-5374.310678

• 观点:神经损伤修复保护与再生 • 上一篇    下一篇

神经球测定:研究神经干细胞的有效体外技术

  

  • 出版日期:2021-11-15 发布日期:2021-04-13

The neurosphere assay: an effective in vitro technique to study neural stem cells

Rita Soares, Filipa F. Ribeiro, Diogo M. Lourenço, Rui S. Rodrigues, João B. Moreira, Ana M. Sebastião, Vanessa A. Morais, Sara Xapelli   

  1. Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal (Soares R, Ribeiro FF, Lourenço DM, Rodrigues RS, Moreira JB, Sebastião AM, Morais VA, Xapelli S)
    Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal (Soares R, Ribeiro FF, Lourenço DM, Rodrigues RS, Moreira JB, Sebastião AM, Xapelli S)
    Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal (Soares R, Morais VA)
  • Online:2021-11-15 Published:2021-04-13
  • Contact: Sara Xapelli, PhD,sxapelli@medicina.ulisboa.pt.
  • Supported by:
    This work was supported by IF/01227/2015 and UID/BIM/50005/2019, projeto financiado pela Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) através de Fundos do Orçamento de Estado. RS (SFRH/BD/128280/2017), FFR (IMM/CT/35-2018), DML (PD/BD/141784/2018), and RSR (SFRH/BD/129710/2017) received a fellowship from FCT. 

摘要:

Neural Regen Res神经球测定:一种研究神经干细胞强有力的体外技术

    研究发现基于评估成人大脑中的神经干细胞NSCs行为,特别是通过补充神经元、星形胶质细胞或少突胶质细胞的缺失或功能障碍的方式,可以为神经和/或神经精神损伤制定大量修复策略。现在已经研发出一些体内和体外技术用于进一步的NSC生物学研究。

最近,来自葡萄牙里斯本大学医学院的Sara Xapelli团队小组展示了神经球测定(NSA)从神经源性龛获得高产量NSCs的潜力,以及在研究NSCs内在特性方面的应用。他们认为NSA可以简单而有效获取容易扩增培养的未分化细胞的可再生来源。NSA最早由Reynolds 和Weiss在1992年提出,NSA的应用开辟的一个新的研究领域——再生神经生物学,并最终挑战并推翻了Ramon y Cajal提出的“无成人神经发生”。NSA作为一项强大的体外技术,可以支持可控条件下的NSC生物学研究。这项技术有望用于研究NSCs固有特性以及探讨NSCs动力学的潜在机制。NSA技术拓宽了我们对几种脑部疾病潜在机制的理解,为创新再生疗法打开了大门。  

 

文章在《中国神经再生研究(英文版)》杂志20211111期发表。

https://orcid.org/0000-0001-6854-2509 (Sara Xapelli)

Abstract: Neural stem cells (NSCs) are known to be present in the adult mammalian brain where they constitutively differentiate into the neuronal, astroglial, and oligodendroglial lineages, in defined processes termed neurogenesis, astrogliogenesis and oligodendrogenesis, respectively (reviewed in Braun and Jessberger, 2014). During brain development, NSCs are present throughout the brain, becoming progressively restricted to defined brain regions. In the adult brain, NSCs are mainly present in areas classically known as neurogenic niches, i.e. the subventricular zone (SVZ), along the lateral walls of the lateral ventricles, and the subgranular zone, located in the dentate gyrus (DG) of the hippocampus. These areas are particularly enriched with NSCs, which not only are multipotent cells but also proliferative cells with the ability to self-renew, thus maintaining their own pool of cells. In fact, neurogenesis, astrogliogenesis and oligodendrogenesis are highly intricate processes comprising several steps, including proliferation, differentiation, migration, and functional integration of the newly formed cells in the existing circuitry, which are regulated by a plethora of factors. These newly differentiated adult-born cells have the capacity to continuously modulate brain function and plasticity, by constantly reacting to external or internal stimuli (reviewed in Braun and Jessberger, 2014).