中国神经再生研究(英文版) ›› 2021, Vol. 16 ›› Issue (11): 2225-2226.doi: 10.4103/1673-5374.310682

• 观点:退行性病与再生 • 上一篇    下一篇

线粒体膜中的淀粉样孔

  

  • 出版日期:2021-11-15 发布日期:2021-04-13

Amyloid pores in mitochondrial membranes

Neville Vassallo   

  1. Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MSD 2080, Malta
  • Online:2021-11-15 Published:2021-04-13
  • Contact: Neville Vassallo, MD, MPhil, PhD, neville.vassallo@um.edu.mt.
  • Supported by:
    This work was supported by grants from the Malta Council for Science and Technology (No. R&I-2012-066), the Faculty of Medicine and Surgery of the University of Malta (Nos. MDSIN08-21 and MDSBM20-24) and the University of Malta (No. PHBR06). 
    This work was partly presented at the 10th World Congress on Targeting Mitochondria (Berlin, October 2019), as titled by “Amyloid Pores – A New Class of Mitochondrial Porins?”.

摘要:

Neural Regen Res:淀粉样蛋白“线粒体孔蛋白”:神经退行性蛋白病的新治疗策略

     越来越多的证据表明,聚集的蛋白质和肽较小,处于亚稳态中间形式(称为寡聚物)而不是晚期成熟的原纤维,代表了最具神经毒性的物种。这种毒性机制似乎涉及寡聚体与质膜相互作用同时诱导细胞渗漏的能力。但是当前研究多将线粒体和线粒体膜作为神经细胞中寡聚体致病作用的优先靶标。

来自马耳他大学的Neville Vassallo团队近年来开始关注脑神经退行性疾病相关的淀粉样蛋白膜活性寡聚聚集体之间的相互作用。这些蛋白包括α-突触核蛋白(α-syn),tau和淀粉样β-Aβ),都具有独特的线粒体双膜结构。这三种淀粉样蛋白/肽都是预先聚集的可溶性寡聚体,触发了强大的线粒体肿胀,释放细胞c并降低了Δφm。研究者最初发现带有拟态膜的脂质囊泡比其他类型的膜更易被Aβ(1-42),α-syntau的聚集形式渗透,并且拟态膜富含独特的线粒体标志性磷脂心磷脂(CL)。研究者设想通过一种常见的成孔机制直接刺穿线粒体,可以针对富集CL的特定线粒体膜结构域Vassallo团队认为淀粉样蛋白“线粒体孔蛋白”机制意味着使用小分子化合物可以阻止包埋孔的导电活性,可能为神经退行性蛋白病患者提供一种新颖而有效的治疗策略。

 

文章在《中国神经再生研究(英文版)》杂志20211111期发表。

https://orcid.org/0000-0002-8985-5587 (Neville Vassallo)

Abstract: Neurodegenerative diseases of the amyloid type include common conditions such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. Despite the fact that the phenotypes of these neuropathic maladies differ widely, ranging from cognitive to motor and psychotic disturbances, they are all characterized by the pathological accumulation and deposition in the central nervous system of well-ordered protein aggregates known as amyloid fibrils. Accumulating evidence indicates that rather than the end-stage mature fibrils, however, it is the smaller, metastable intermediate forms (known as oligomers) of the aggregated protein and peptides which represent the most neurotoxic species (Chiti and Dobson, 2017). One suggested mechanism for such toxicity appears to involve the ability of oligomers to interact with plasma membranes whilst inducing cell leakage (Surguchov et al., 2017). However, contemporary work increasingly points to mitochondria, and hence mitochondrial membranes, as preferential targets for the pathogenic action of oligomers in the neuronal cell (Ghio et al., 2016).