中国神经再生研究(英文版) ›› 2021, Vol. 16 ›› Issue (11): 2201-2203.doi: 10.4103/1673-5374.310684

• 观点:神经损伤修复保护与再生 • 上一篇    下一篇

线粒体融合素激活增强线粒体运动,并促进CMT2A中的神经再生

  

  • 出版日期:2021-11-15 发布日期:2021-04-13

Mitofusin activation enhances mitochondrial motility and promotes neuroregeneration in CMT2A

Gerald W. Dorn II   

  1. Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
  • Online:2021-11-15 Published:2021-04-13
  • Contact: Gerald W. Dorn II, MD, gdorn@wustl.edu.
  • Supported by:
    The present work was supported by NIH R35HL135736, R41NS113642, R41NS115184, and Research Grant 628906 from the Muscular Dystrophy Association (to GWD). GWD is the Philip and Sima K. Needleman-endowed Professor and a Scholar-Innovator awardee of the Harrington Discovery Institute. 

    GWD is an inventor on patent applications PCT/US18/028514 submitted by Washington University and PCT/US19/46356 submitted by Mitochondria Emotion, Inc. that cover the use of small molecule mitofusin agonists to treat chronic neurodegenerative diseases, and is a founder of Mitochondria in Motion, Inc., a Saint Louis based biotech R&D company focused on enhancing mitochondrial trafficking and fitness in neurodegenerative diseases.

摘要:

Neural Regen Res:线粒体融合素激活促进线粒体对一系列有害损伤的抵抗

    两种遗传性神经病是具有线粒体功能障碍的典型神经退行性疾病:由超氧化物歧化酶1突变引起的家族性肌萎缩性侧索硬化症是线粒体适应性丧失的一个例子。 尽管线粒体融合蛋白功能异常损害线粒体运输的确切机制尚不清楚,但线粒体融合素2突变引起的CMT2A是线粒体运输中断的一个例子。线粒体融合素2和密切相关的线粒体融合素1最初被描述为介导哺乳动物线粒体外膜融合的蛋白。线粒体融合素2在线粒体(通过自噬途径选择性消除受损的线粒体)和轴突线粒体运输中也起着重要作用。 由线粒体融合素2突变引起的CMT2A中线粒体运动能力受损以及小分子线粒体蛋白激活剂逆转CMT2A相关的线粒体运动障碍表明药理学激活内源性正常线粒体融合素1和线粒体融合素2可能会克服突变型线粒体融合素2抑制常染色体显性CMT2A中正常丝裂霉素的功能。

    来自美国华盛顿大学医学院的Gerald W. Dorn II支持线粒体融合素活化促进CMT2A中神经元再生的观点。在连接突触中的线粒体定位与增强的线粒体运动性之间观察到的关系是推断的。CMT2A平台允许对线粒体进行活细胞研究纵横比(一种间接的融合度量),线粒体运动性和在轴突末端的驻留(将轴突运输与远端神经元定位联系起来)以及轴突生长/分支(隔离和铺板后轴突再生的指标)。线粒体融合素的活化显着改善了每个测量的终点,使线粒体长宽比,运动性和远端轴突驻位正常化,并加速了轴突的生长。重要的是,这些反应的时间过程是:线粒体蛋白激活后仅2小时即可达到最大运动能力,而轴突生长则在24小时内得到明显加速,但线粒体融合仅在48小时后得到纠正,这支持了线粒体转运与神经元再生之间的因果关系。

    文章《中国神经再生研究(英文版)》杂志202111 月  11 期发表。

https://orcid.org/0000-0002-8995-1624 (Gerald W. Dorn II)

Abstract: Human brains represent only 2% of body mass, but their high relative metabolic activity accounts for ~20% of total body adenosine triphosphate (ATP) consumption. ATP generated by neuronal mitochondria fuels nerve signaling and homeostatic repair. In the peripheral nervous system, which has greater capacity for regeneration after physical, toxic or genetic injury than the central nervous system, ATP also powers actin polymerization/depolymerization for growth cone formation and axon extension. Mitochondrial ATP generation is therefore a central component of neuronal functioning in the central and peripheral nervous systems.