中国神经再生研究(英文版) ›› 2021, Vol. 16 ›› Issue (11): 2227-2228.doi: 10.4103/1673-5374.310687

• 观点:神经损伤修复保护与再生 • 上一篇    下一篇

线粒体无机多聚磷酸盐(polyP):哺乳动物生物能量学的缺失环节

  

  • 出版日期:2021-11-15 发布日期:2021-04-13

Mitochondrial inorganic polyphosphate (polyP): the missing link of mammalian bioenergetics

Brendan McIntyre, Maria E. Solesio   

  1. Department of Biology, Rutgers University, Camden, NJ, USA
  • Online:2021-11-15 Published:2021-04-13
  • Contact: Maria E. Solesio, PhD, m.solesio@rutgers.edu.
  • Supported by:
    The authors would like to thank Mr. Mitch Maleki (Esq.) for editing the manuscript and to Dr. Pedro Urquiza, Dr. Mariona Guitart-Mampel, Vedangi Hambardikar and Ernest Scoma for reading it and providing significant insights. We apologize to colleagues whose work has not been cited, due to space constraints. 

    This present work was supported by startup funds from Rutgers University and by NIH (4R00AG055701-03) to MES. 

摘要:

Neural Regen Res:无机多聚磷酸盐在哺乳动物生物能量学中的作用

    生物能量失衡是一种有害的特征,它是许多人类疾病的病因,包括糖尿病、癌症和神经退行性变。多年来,哺乳动物的生物能量学仅限于线粒体氧化磷酸化,这是哺乳动物获得三磷酸腺苷的主要机制,以及细胞质糖酵解和密切相关的磷酸戊糖途径,在过去的几十年里,许多作者主张将这一术语扩展到包括所有与细胞需求和能量生产相匹配的机制,以满足细胞在不同状态下的需求,包括生理和病理条件。这个更广泛的定义将包括其他重要的能量代谢过程,如无处不在的无机多聚磷酸盐。

    来自美国罗格斯大学艺术与科学学院的Maria E. Solesio团队认为尽管所有文献似乎都表明无机多聚磷酸盐在生物能量学中起着关键作用,但仍需进行进一步的研究,以阐明无机多聚磷酸盐与哺乳动物生物能量学其他组成部分相互作用的机制,以及调控这些机制的过程。要做到这一点,了解无机多聚磷酸盐在哺乳动物细胞中的确切代谢以及开发可重复的分析工具至关重要。阐明无机多聚磷酸盐在哺乳动物生物能量学中的作用可以为靶向这种聚合物的代谢铺平道路,这可能构成一种潜在的创新和有效的药理学策略来对抗不平衡的生物能量学。这一策略将特别适用于神经退行性疾病领域,包括帕金森病和阿尔茨海默病。

    文章《中国神经再生研究(英文版)》杂志202111 月  11 期发表。

https://orcid.org/0000-0002-8105-1701 (Maria E. Solesio)

Abstract: Bioenergetics imbalance is a deleterious feature, which is present in the etiopathology of many human diseases, including in diabetes, cancer, and neurodegeneration. Therefore, targeting the components of mammalian bioenergetics, as well as the mechanisms that regulate the relationship between these components, could be a promising pharmacological strategy against a wide variety of pathologies. While for many years mammalian bioenergetics has been exclusively circumscribed to the mitochondrial oxidative phosphorylation (OXPHOS), which is the main mechanism to obtain adenosine triphosphate (ATP) in mammals, and to the cytoplasmic glycolysis and the closely related pentose phosphate pathway, in the last few decades many authors have advocated for expanding this term to include all the mechanisms that are involved in matching the cellular demands and production of energy to meet the needs of the cell under different states, including physiological and pathological conditions. This broader definition will include other key energy metabolites, such as the ubiquitous inorganic polyphosphate (polyP).