中国神经再生研究(英文版) ›› 2021, Vol. 16 ›› Issue (12): 2403-2404.doi: 10.4103/1673-5374.313038

• 观点:神经损伤修复保护与再生 • 上一篇    下一篇

组合遗传学方法可发现高阶调控组合并设计神经分化的遗传驱动

  

  • 出版日期:2021-12-15 发布日期:2021-05-14

Combinatorial genetics methods for discovering high-order regulatory combinations and engineering genetic drivers for neural differentiation

Dawn G. L. Thean, Alan S. L. Wong*   

  1. Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China (Thean DGL, Wong ASL) ;Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China (Wong ASL)
  • Online:2021-12-15 Published:2021-05-14
  • Contact: Alan S. L. Wong, PhD, aslw@hku.hk.
  • Supported by:
    The present work was supported by the University of Hong Kong Internal funds, Croucher Foundation Start-up Allowance, and NSFC 2020 Excellent Young Scientists Fund (to ASLW).

摘要:

Neural Regen Res:组合遗传学方法是发现高阶调节组合并设计遗传驱动神经分化有前途的策略

    组合遗传学(CombiGEM)不仅提供了一种进行大规模集合筛选的系统方法,而且还具有可伸缩组装高阶组合遗传文库的能力。一锅法允许用户筛选多种基因组合:单向、双向、三向以及理论上的n向库。这为构建和测试感兴趣的单个候选组合的传统过程提供了一种快速的替代方法。虽然还开发了其他几种组合CRISPR筛选策略来研究成对遗传组合,但CombiGEM提供了一个独特的机会来评估三个或更多遗传组合之间的相互作用。例如,如果用户打算使用CRISPRaCRISPRi分别过度表达或抑制候选转录因组合的列表,则可以使用CombiGEM CRISPR v2.0筛选靶向sgRNA组合的转录因条形码库。通过一锅连接步骤,sgRNAs文库及其各自的条形码被整合到慢病毒目的载体中,该目的载体在激活神经元细胞类型特异性启动子(例如微管蛋白α1)时报告荧光蛋白的表达。sgRNAs文库和一个单独的慢病毒载体携带的酶缺陷Cas9或与转录激活子或阻遏子融合,可以被输送到所需的起始细胞。随着时间的推移,当细胞开始分化时,只有诱导的神经元样细胞才会表达荧光,这些细胞可以通过荧光激活的细胞分选来分离,通过条形码测序来检索它们所携带的转录因组合。

    来自中国香港大学生物医学学院的Alan S. L. Wong团队认为与试错法相比,在采用更系统的方法来确定驱动一种细胞类型向神经元谱系转化所需的基本因素或组合方面取得了进展。然而,一直缺乏识别高阶组合的能力。CombiGEM方法可能能够解决这些限制。CombiGEM使用条形码、一锅式连接系统,将DNA结合因子的高阶组合拼凑在一起,一次性靶向DNA,绕过多轮筛选的过程,将命中数缩小到可管理的大小,以便进行下游验证。效率较低的天然转录因可以用人工或工程转录因替代,以更好地调节基因表达。CombiSEAL,一种蛋白质突变方法,将使用户能够通过在蛋白质及其不同结构域内直接组装带有条形码标记的多个位点突变来创建大量转录因子变体;这将加快和降低筛选程序的成本,以检索感兴趣的变异类型的突变信息。

    文章在《中国神经再生研究(英文版)》杂志2021年 12 月  12 期发表。

    https://orcid.org/0000-0003-1790-3233 (Alan S. L. Wong)

Abstract: Researchers are still striving to find better therapeutics to revert or slow down the progression of neurological disorders such as Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. These disorders are the result of neuronal cell death in different parts of the brain. Medications or treatments used to relieve the symptoms in patients have not been well established. They do not recover the damaged neural tissues and can result in unwanted side effects. Therefore, an increasing number of studies look to stem cells as a promising therapeutic, because of their self-renewal capabilities and flexibility of differentiation into desired cell lineages for engraftment into the patient to recover the lost neural tissues. However, before stem cells can be clinically used in treating neurological disorders, there are still areas that require a better understanding to unlock their full potential.