中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (3): 477-481.doi: 10.4103/1673-5374.320968

• 综述:神经损伤修复保护与再生 • 上一篇    下一篇

Sox蛋白类泛素化修饰对神经发育和再生的影响

  

  • 出版日期:2022-03-15 发布日期:2021-10-14

Influence of Sox protein SUMOylation on neural development and regeneration

Kun-Che Chang*   

  1. Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
  • Online:2022-03-15 Published:2021-10-14
  • Contact: Kun-Che Chang, PhD, kcchang@pitt.edu.
  • Supported by:
    This work was supported by NIH CORE Grant P30 EY08098 to the Department of Ophthalmology, University of Pittsburgh, the Eye and Ear Foundation of Pittsburgh (to KCC).

摘要: Neural Regen Res: Sox转录因子作为治疗神经退行性疾病治疗靶标的潜在作用
    SRY相关的HMG-box(Sox)转录因子是调控中枢神经系统发育的重要因子,参与多种神经疾病。Sox蛋白的翻译后修饰可以改变其在中枢神经系统中的功能。在不同类型的翻译后修饰中,Sox蛋白的小泛素样修饰基因(SUMO)修饰了它们的转录活性。Sox蛋白类泛素化修饰在无脊椎动物和脊椎动物神经发育和再生中起重要作用。在过去十年中,RNA测序技术促进了转录组范围的分析,能够检测基因切片转录物、PTM和单核苷酸多态性。先前的RNA测序研究表明,Sox11的类泛素化修饰通过激活不同的信号通路来调节视网膜神经节细胞存活和轴突再生。利用这项技术可以更深入地了解SUMO在神经发育和神经疾病中的调节机制。在不同的物种中,SoxN(果蝇)的类泛素化修饰在中枢神经系统发育中显示出神经保护作用,而SoxC(小鼠)和SoxE(爪蟾)的去类泛素化修饰可分别促进轴突再生和神经嵴形成。SUMOylation可能在发病机制中起保护作用。通过删除SENP1的血管内皮细胞生长因子受体2类泛素化修饰可减轻血管内皮细胞生长因子诱导的视网膜血管生成,表明增强类泛素化修饰可能是糖尿病视网膜病变的治疗策略。此外,SoxN的类泛素化修饰对果蝇中枢神经系统的发育具有重要意义。由于Sox3与智力低下有关,研究Sox3在人类基因组中的位点有助于了解Sox3在此类神经疾病中的分子机制。使用SENP抑制剂作为促进Sox3类泛素化修饰的治疗可能是针对Sox3介导疾病的一种治疗策略。
    来自美国匹兹堡大学医学院的Kun-Che Chang认为,信号通路的处理可能提供另一种治疗策略。细胞外信号调节激酶磷酸化在人脑海绵状血管畸形病变中增加。海马神经元中细胞外信号调节激酶1/2激活需要PIAS3介导的神经元型一氧化氮合酶类泛素化修饰,这表明阻断PIAS3可以通过抑制细胞外信号调节激酶信号来减轻脑海绵状血管畸形的程度。在眼睛中,N-视黄醛-N-视黄醛乙醇胺,一种导致线粒体DNA突变的氧化应激诱导剂,积聚在视网膜色素上皮组织中,导致变性和新生血管形成。由于线粒体类泛素化修饰在许多疾病中经常被发现,因此研究N-视黄酰化-N-视黄酰乙醇胺介导的变性是否也受类泛素化修饰的调控将是一个有趣的研究方向。在基因治疗方面,通过视网膜下腺相关病毒2注射将SUMO位点突变基因的过度表达应用于PRE65小鼠,显示出恢复性表型。越来越多的证据表明,玻璃体腔内注射腺相关病毒通过抑制Krüppel样转录因子9或过度表达非类泛素化修饰Sox11突变体(Sox11K91A)显示出促进轴突再生的治疗优势。成簇的规律间隔的短回文重复序列技术可以特异性地修饰、删除或纠正DNA的精确区域,被认为是治疗遗传疾病的一种潜在方法。许多成功的动物研究使用CRISPR/Cas9治疗视网膜色素变性和脉络膜新生血管。利用CRISPR/Cas9修饰SUMO结合残基来靶向SUMO位点也可能对遗传性神经系统疾病带来治疗益处,这对于未来的探索仍然是一个未知数。
文章在《中国神经再生研究(英文版)》杂志2022年 3月3  期发表。


https://orcid.org/0000-0002-0871-5612 (Kun-Che Chang)

Abstract: SRY-related HMG-box (Sox) transcription factors are known to regulate central nervous system development and are involved in several neurological diseases. Post-translational modification of Sox proteins is known to alter their functions in the central nervous system. Among the different types of post-translational modification, small ubiquitin-like modifier (SUMO) modification of Sox proteins has been shown to modify their transcriptional activity. Here, we review the mechanisms of three Sox proteins in neuronal development and disease, along with their transcriptional changes under SUMOylation. Across three species, lysine is the conserved residue for SUMOylation. In Drosophila, SUMOylation of SoxN plays a repressive role in transcriptional activity, which impairs central nervous system development. However, deSUMOylation of SoxE and Sox11 plays neuroprotective roles, which promote neural crest precursor formation in Xenopus and retinal ganglion cell differentiation as well as axon regeneration in the rodent. We further discuss a potential translational therapy by SUMO site modification using AAV gene transduction and Clustered regularly interspaced short palindromic repeats-Cas9 technology. Understanding the underlying mechanisms of Sox SUMOylation, especially in the rodent system, may provide a therapeutic strategy to address issues associated with neuronal development and neurodegeneration.     

Key words: axon regeneration, neural development, neurological disorder, neuroprotection, post-translational modification, small ubiquitin-like modifier, Sox transcription factor, SUMOylation