中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (4): 785-787.doi: 10.4103/1673-5374.320981

• 观点:脑损伤修复保护与再生 • 上一篇    下一篇

跨血脑屏障的非侵入性基因传递:现在和将来的观点

  

  • 出版日期:2022-04-15 发布日期:2021-10-16

Non-invasive gene delivery across the blood-brain barrier: present and future perspectives

Seigo Kimura*, Hideyoshi Harashima   

  1. Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan (Kimura S, Harashima H) 
    Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan (Kimura S, Harashima H)
  • Online:2022-04-15 Published:2021-10-16
  • Contact: Seigo Kimura, seigo757@eis.hokudai.ac.jp.

摘要: Neural Regen Res:基因向大脑的非侵入性传递
社会老龄化已经到来,伴随着神经系统疾病患者绝对数量的增加,如阿尔茨海默病和帕金森病,但没有有效的治疗方法。基因治疗在神经系统疾病的治疗上有很大的前景,但是传递治疗基因是基因治疗成功的主要障碍。纳米技术,如病毒载体和非病毒载体,现在可以创造高效的大脑靶向基因传递系统。2019年,美国食品和药物管理局批准了Zolgensma,一种治疗脊髓性肌萎缩症的基因疗法。Zolgensma的问世证实了体内靶向基因治疗的现实可能性,并有望进一步加速基因治疗药物传递系统技术的发展。Zolgensma涉及到腺相关病毒载体的使用,由于其高转染效率,是基因治疗的主要方法之一;然而,存在与病毒载体相关的问题,包括产生针对载体的中和抗体以及与高剂量/大规模生产相关的问题。关于这些,非病毒载体提供了一些明显的优势。非病毒给药技术在过去的十年中有了长足的发展,特别是在脂质纳米粒、脂质体和胶束等纳米颗粒在药物给药中的应用。与病毒载体相比,非病毒载体具有一些优势,包括更安全和更灵活的基因传递方式,尽管它们的转染效率较低。现在有几种合成载体可用于基因传递。通过合成非病毒载体进行基因传递主要有两种策略。一种策略使用与不同功能装置(如肽、糖、抗体或适体)结合的治疗性核酸,而另一种策略依赖于将核酸封装在纳米颗粒中。近十年来,纳米颗粒技术在核酸传递领域引起了广泛的关注。
来自日本北海道大学的Seigo Kimura团队认为,脂质体表面修饰了一种肽,这种肽与载脂蛋白的脂质结合域特异性地相互作用,以控制载脂蛋白的吸附模式。当使用这一途径时,应该注意到载脂蛋白识别受体不仅在大脑中表达,而且在外周组织,特别是肝脏中也表达。尽管目前还不清楚这种靶点,但使用一种内源性配体,与载脂蛋白相比,这种配体在大脑中更具可转移性和选择性,将是一种理想的方法。需要注意的是,在静态体外条件和流动体内条件下,蛋白冠的质量和数量是不同的。因此,为了了解纳米颗粒的命运,最好是在体内或模拟体内条件的环境中直接评估蛋白冠,例如模拟血管结构的微流控通道。随着药剂学概念的迅速扩展,包括诱导多能干细胞等再生医学和3D打印机药物发现,基因治疗有望成为继小分子药物和抗体药物之后的下一代创新医学。基因疗法被认为在治疗包括阿尔茨海默症在内的中枢神经系统疾病方面特别有前途,阿尔茨海默症是一种社会负担最重的疾病。非侵入性靶向载体具有广阔的应用前景。毫无疑问,今后将进一步加快针对基因治疗的病毒载体和非病毒载体的研究。虽然高通量筛选系统,如使用DNA条形码的方法是可用的,这将更详细的研究载体与机体的相互作用方式和反应。此外,还需要有关治疗疾病所需的治疗性基因表达量的定量数据,这对于确定基因治疗所需的剂量以及实现安全性和有效性都很重要。基因传递的研究在过去的十年里取得了巨大的进展,但仍有改进的空间,特别是在大脑传递方面仍需进一步发展。
    文章在《中国神经再生研究(英文版)》杂志2022年 4 月 4 期发表。


https://orcid.org/0000-0001-6382-6908 (Seigo Kimura) 

Abstract: The aging of society has arrived, and is accompanied by an increase in the absolute numbers of patients with neurological disorders, such as Alzheimer’s and Parkinson’s diseases (Feigin et al., 2020). Such diseases, particularly Alzheimer’s disease and other forms of dementia, affect not only the patients themselves, but also the people around them, including family members and care givers. As a result, such neurological disorders are thought to carry a larger social burden compared to other diseases. The most critical point in the current situation is that there is no effective treatment despite the fact that the number of patients increase with the aging of the population. Gene therapy has great promise for the treatment of neurological disorders (Sun and Roy, 2021), but delivering therapeutic genes is a major impediment for the success of gene therapy. Nanotechnologies such as viral and non-viral vectors now permit the creation of efficient brain-targeted gene delivery systems. In 2019, the Food and Drug Administration approved Zolgensma, a gene therapy for the treatment of spinal muscular atrophy. The advent of Zolgensma confirmed that in vivo targeted gene therapy is a real possibility and is expected to further accelerate the development of drug delivery system technology in anticipation of gene therapy. Zolgensma involves the use of an adeno-associated virus (AAV) vector, one of the leading approaches to gene therapy, due to its high transfection efficiency; however there are issues associated with viral vectors including the production of neutralizing antibodies to the vectors and issues associated with high dose/large scale production. Regarding those points, non-viral vectors offer some distinct advantages. Non-viral delivery technologies have evolved dramatically over the past decade, especially in the use of nanoparticles in drug delivery as exemplified by lipid nanoparticles, liposomes, and micelles. The goal of this perspective is to provide a prospective look into this emerging field. To accomplish this, we mainly address three aspects of this situation: (1) brain-targeted AAV vectors; (2) non-viral delivery via non-invasive methods; (3) mechanistic studies concerning crossing the blood-brain barrier (BBB) and methodology for vector screening.