中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (3): 569-571.doi: 10.4103/1673-5374.321002

• 观点:视神经损伤修复保护与再生 • 上一篇    下一篇

连续块面扫描电子显微镜揭示了视网膜色素上皮的新组织细节

  

  • 出版日期:2022-03-15 发布日期:2021-10-15

Serial block face scanning electron microscopy reveals novel organizational details of the retinal pigment epithelium

J. Arjuna Ratnayaka*, Eloise Keeling   

  1. Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
  • Online:2022-03-15 Published:2021-10-15
  • Contact: J. Arjuna Ratnayaka, PhD, J.Ratnayaka@soton.ac.uk.
  • Supported by:
    The present work was supported by the Awards to JAR from the UK Macular Society, UKRI Quality Research Strategic Priorities Fund from Public Policy Southampton (New Things Fund) as well as the Gift of Sight Appeal.

摘要: Neural Regen Res: 采用连续样本表面扫描电子显微镜可获得对眼部细胞和组织结构的新见解
利用连续样本表面扫描电子显微镜技术,可对固定和树脂嵌埋的标本进行连续切片和成像,构建高分辨率细胞和组织超微结构的三维数据集。采用灌注固定C57BL/6小鼠眼,对外视网膜进行图像处理后发现视网膜色素上皮新组织细节;一种专门的细胞单层,维持上覆的感光器,并形成外血视网膜屏障。视网膜色素上皮细胞的光感受器数量远远超过了人们普遍认为的。三维数据可测量视网膜色素上皮细胞质和核体积、顶端视网膜色素上皮表面微绒毛的长度和角度以及基底外侧膜下的亚视网膜色素上皮空间。对连续样本表面扫描电子显微镜图谱进行分析,发现数百个线粒体在三维显示,为其体积和空间分布提供了信息。线粒体形态和大小不同,主要分布于细胞的中、基底区。随着研究人员越来越多地利用连续块面扫描电子显微镜和其他成像技术,以获得对眼睛细胞和组织组织结构的新见解。这些发现也有助于改善目前对常见的失明条件(如年龄相关性黄斑变性)的病理学理解,以及导致不可逆转视力丧失的罕见视网膜病变。最新研究显示高光氧化性视网膜环境易导致细胞器受损,加上有丝分裂后视网膜色素上皮无法通过细胞分裂修复任何损伤,这意味着线粒体功能受损与年龄相关性黄斑变性等视网膜病密切相关。三维成像的应用最近为斑马鱼光感受器中线粒体的动态行为提供了令人着迷的见解。线粒体在夜间发生生物生成,导致越来越多的更小、更简单的细胞器和锥细胞的代谢活性增加。相反,在白天,与内质网和自噬体的联系导致线粒体数量减少。大的绿锥光感受器含有700个线粒体,小的绿锥细胞中有300-450个线粒体。在斑马鱼光感受器中发现了巨大的线粒体,而在小鼠视网膜中央的视网膜色素上皮细胞中没有观察到。 
来自英国南安普顿大学医学院的J. Arjuna Ratnayaka团队认为考虑到光感受器的高代谢需求,这些细胞中大量的线粒体并不令人惊讶。精细的昼夜节律相关的变化为斑马鱼线粒体结构和功能如何调节以优化视觉提供了新的见解。连续样本表面扫描电子显微镜同样可用于研究视网膜色素上皮细胞中线粒体是否因代谢需求和疾病的变化而重新组织。线粒体的这种战略性排列是轴突的一个很好的特征,轴突的长度可达一米。线粒体的顺行和逆行运动受到破坏,线粒体之间的间隔变长,或轴突节缺乏线粒体,导致Ca2+内稳态、脂质生物合成以及腺苷三磷酸缺乏等缺陷。显微镜技术的发展带来了影像学的复兴,使得眼部解剖学的研究以前所未有的方式进行。当与快速发展的非侵入性视网膜成像领域(包括光谱域光学相干断层扫描和显微视野检查)相结合时,这些技术提供了进一步了解视网膜老化和疾病相关变化的诱人前景。这些技术的可获得性提高可能会利于活体眼的纵向评估与保存完好的视网膜组织的分析相结合的研究,从而使疾病与细胞和组织水平的超微结构变化有更好的相关性。从长远来看,这些见解有助于为开发有效的新疗法铺平道路,治疗导致不可逆转的视力丧失的疾病。
   文章在《中国神经再生研究(英文版)》杂志2022年 3 月  3 期发表。


https://orcid.org/0000-0002-1027-6938 (J. Arjuna Ratnayaka); https://orcid.org/0000-0003-0399-359X (Eloise Keeling)

Abstract: Advances in imaging have led to the development of several new types of microscopes such as serial block face scanning electron microscopy (SBF-SEM), lightsheet microscopy, as well as X-ray micro-computed tomography (micro-CT), which enables the study of samples in fundamentally different ways. Significantly, these are now commercially available, which facilitates their widespread use in research. With SBF-SEM, fixed and resin-embedded specimens can be serially sectioned and imaged to construct a 3D dataset of the ultrastructure of cells and tissues at high resolution. We used this technique on perfusion-fixed C57BL/6 mouse eyes to image the outer retina. Our findings revealed novel organizational details of the retinal pigment epithelium (RPE) (Keeling et al., 2020b); a specialized cell monolayer that maintains the overlying photoreceptors and also forms the outer blood-retinal-barrier. RPE cells were found to look after far more photoreceptors than was widely assumed. 3D-data enabled measurements of the RPE cytoplasmic and nuclear volumes, the length and angle of microvilli on the apical RPE surface, as well as sub-RPE spaces under the basolateral membrane. The study also compared between mono-nucleate vs. bi-nucleate RPE cells, whilst the use of computing microinstructions (macros) provided information on interactions between adjacent cells in the RPE monolayer. Analysis of SBF-SEM stacks showed several hundred mitochondria which were rendered in 3D, providing information on their volume and spatial distribution in healthy RPE. Mitochondria were found in varying shapes and sizes, and predominantly localized to the mid and basal-zones of cells. The capabilities of SBF-SEM alongside other imaging techniques are being increasingly harnessed by investigators to gain novel insights into the organization of cells and tissues in the eye. These findings also help improve the current understanding of pathology linked with common blinding conditions such as age-related macular degeneration (AMD), as well as rare forms of retinopathy which leads to irreversible sight-loss.