中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (4): 741-747.doi: 10.4103/1673-5374.322429

• 综述:退行性病与再生 • 上一篇    下一篇

线粒体活性在神经发生和神经退行性疾病中的意义

  

  • 出版日期:2022-04-15 发布日期:2021-10-16

Significance of mitochondrial activity in neurogenesis and neurodegenerative diseases

Serra Ozgen1, 2, #, Judith Krigman1, 3, #, Ruohan Zhang1, 3, 4, Nuo Sun1, 3, *   

  1. 1Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; 2College of Medicine, Graduate Research in the Department of Neuroscience, The Ohio State University, Columbus, OH, USA; 3Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; 4College of Pharmacy, Department of Graduate Research, The Ohio State University, Columbus, OH, USA
  • Online:2022-04-15 Published:2021-10-16
  • Contact: Nuo Sun, PhD, nuo.sun@osumc.edu.
  • Supported by:
    This work was supported by a grant from the National Institutes for Health (K22-HL135051, to NS).

摘要: Neural Regen Res:线粒体在神经发生和神经元活力中的作用至关重要
从神经干细胞的产生到神经元的维持和最终的死亡,线粒体在调节神经通路的稳态中起着关键的作用,这一任务对神经认知功能健康至关重要。线粒体通过氧化磷酸化为神经传递提供能量,并沿着神经元轴突产生动作电位。代谢开关、线粒体生物合成和线粒体碎片以及活性氧的增加将导致“旧的”或缺陷线粒体的去除。有丝分裂吞噬是一种利用自噬机制清除靶向线粒体的机制,在确保线粒体健康和神经发生方面发挥着关键作用。一旦受损的线粒体被标记,它就会被双膜自噬体吞噬,并被溶酶体降解。分化前在神经干细胞中观察到活跃的有丝分裂吞噬作用,有助于清除线粒体重塑产生的缺陷线粒体。PINK1(一种有丝分裂吞噬调节因子)的缺失导致神经干细胞的代谢缺陷并阻碍分化。线粒体重塑和调控是神经发生的关键,在神经元和视网膜神经节细胞增殖和分化。阐明这些机制将加深我们对大脑发育的理解,并有助于寻找治疗神经退行性疾病的新药物靶点。
来自美国韦克斯纳医学中心的Nuo Sun团队认为有效的阿尔茨海默病治疗方法已被证明是困难的,因为它的机制触发斑块的形成,线粒体功能紊乱和一般神经死亡。抑制阿尔茨海默病进展有两种思路或途径:一是针对负责缠结网络的蛋白质,二是破解线粒体机制,纠正通路功能障碍。首先,虽然已经确定Aβ和tau聚集物对信号损伤有显著的贡献,但是用靶向药物治疗对抗这些特异性蛋白并没有效果。第二种是导致阿尔茨海默病发病机制的线粒体缺陷和相关产品。目前,正在研究两种治疗方法,以阿尔茨海默病相关线粒体功能障碍和过量活性氧产生为目标。第一,亚甲基蓝已经获得批准治疗疟疾、氰化物中毒和缺血性脑损伤。亚甲基蓝可以通过血脑屏障向等细胞捐献电子,从而增加三磷酸腺苷的产生。在随机双盲研究中,阿尔茨海默病患者和阿尔茨海默病动物模型均显示,亚甲基蓝治疗后大脑内的认知改善和血管血流。第二,光生物模拟,也称为低水平激光治疗,被用来刺激受损肌肉组织中血管化,副作用最小。在神经科学领域,线粒体及其相关途径越来越受到关注,线粒体功能从发育到破坏都会影响人体神经元。如前所述,目前尚无治疗阿尔茨海默病、帕金森病或青光眼的药物。然而,有证据表明,分解和识别线粒体在这些病理中的作用,可能是一种信息来源,使研究人员能够找到治疗目标,以减缓这些疾病的进展。
文章在《中国神经再生研究(英文版)》杂志2022年 4月 4 期发表。


https://orcid.org/0000-0001-9829-8172 (Nuo Sun) 

Abstract: Mitochondria play a multidimensional role in the function and the vitality of the neurological system. From the generation of neural stem cells to the maintenance of neurons and their ultimate demise, mitochondria play a critical role in regulating our neural pathways’ homeostasis, a task that is critical to our cognitive health and neurological well-being. Mitochondria provide energy via oxidative phosphorylation for the neurotransmission and generation of an action potential along the neuron’s axon. This paper will first review and examine the molecular subtleties of the mitochondria’s role in neurogenesis and neuron vitality, as well as outlining the impact of defective mitochondria in neural aging. The authors will then summarize neurodegenerative diseases related to either neurogenesis or homeostatic dysfunction. Because of the significant detriment neurodegenerative diseases have on the quality of life, it is essential to understand their etiology and ongoing molecular mechanics. The mitochondrial role in neurogenesis and neuron vitality is essential. Dissecting and understanding this organelle’s role in the genesis and homeostasis of neurons should assist in finding pharmaceutical targets for neurodegenerative diseases.

Key words: Alzheimer’s disease, autophagy, mitochondria, mitophagy, neural stem cells, neurodegenerative diseases, neurogenesis, Parkin, Parkinson’s disease, PINK1