中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (4): 754-758.doi: 10.4103/1673-5374.322430

• 综述:退行性病与再生 • 上一篇    下一篇

神经退行性疾病中的线粒体功能障碍:在疾病发病机理中的作用,分析策略和治疗前景

  

  • 出版日期:2022-04-15 发布日期:2021-10-16

Mitochondrial dysfunctions in neurodegenerative diseases: role in disease pathogenesis, strategies for analysis and therapeutic prospects

Federica Rey1, 2, Sara Ottolenghi3, Gian Vincenzo Zuccotti1, 2, 4, Michele Samaja3, Stephana Carelli1, 2, *   

  1. 1Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milano, Italy; 2Paediatric Clinical Research Centre Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Milano, Italy; 3Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Milano, Italy; 4Department of Paediatrics, Children’s Hospital “V. Buzzi”, Milano, Italy
  • Online:2022-04-15 Published:2021-10-16
  • Contact: Stephana Carelli, PhD, stephana.carelli@unimi.it.

摘要: Neural Regen Res:神经退行性疾病中的线粒体功能障碍:常见和不同机制的最新理解
    线粒体是除哺乳动物红细胞外的所有细胞类型中的基本细胞器,它是多种关键过程所必需的,包括生物能量的产生、活性氧的生物合成、钙稳态的控制和细胞死亡的触发。这些过程中任何一个的破坏都会强烈影响所有细胞的功能,尤其是神经元的功能。遗传性和散发性的神经退行性疾病都不可避免地伴随着一个或多个关键的线粒体过程的功能障碍。线粒体生命周期包括四个阶段:生物发生、融合、裂变和降解。在帕金森病中,线粒体功能障碍(无可争议地导致疾病的发生)可由环境因素或基因突变介导。线粒体参与帕金森病的最相关证据之一是,吸毒者自行静脉注射1-甲基-4-苯基-1,2,5,6-四氢吡啶(线粒体链复合物I的抑制剂),导致帕金森病的发展。大量研究显示帕金森病患者黑质、骨骼肌、血小板和白细胞的线粒体复合体I功能受损。线粒体在帕金森病发展中的意义进一步得到了证实,发现参与线粒体动力学的两种蛋白质PINK1和Parkin的突变导致帕金森病的家族形式。负责线粒体健康监测和损伤检测的PINK1的激活能够招募Parkin,Parkin将泛素结合到线粒体外膜蛋白上,从而导致有丝分裂吞噬。氧化应激是肌萎缩侧索硬化运动神经元变性的驱动因素之一。有丝分裂吞噬过程明显参与肌萎缩侧索硬化的发病机制,神经肌肉连接处吞噬体数量减少,三磷酸腺苷合酶活性增加,线粒体数量增加。许多线粒体相关蛋白与家族性和散发性肌萎缩侧索硬化有关,包括FUS、TDP-43、SOD1和C9ORF72。
     来自意大利米兰大学的Stephana Carelli团队认为,人类疾病与线粒体动力学变化有关,这些变化主要是由常染色体线粒体基因突变(Burt)引起的。主要隐含基因包括参与了Charcot-Marie牙齿病和感觉神经病的MFN2、OPA1和视萎缩3,与严重的婴儿神经退行性疾病有关的DRP1,与Charlcot-Marie牙齿病有关的GDAP1。在导致线粒体功能失调的机制中,mtDNA点突变具有显著作用。这些突变与MELAS(线粒体脑病、乳酸酸中毒和卒中样发作)、MERF(肌阵挛性癫痫和碎裂的红纤维)、LHON(Leber遗传性视神经病变)和NARP(神经病、共济失调和视网膜色素变性)的发生有关。这些疾病中最常见的mtDNA突变是tRNALeu基因A3243G点突变,占MELAS患者的80-90%。表征各种线粒体过程的创新策略包括有丝分裂应激、有丝分裂跟踪器、透射电镜、氧化应激分析以及维持线粒体健康的蛋白质的表达测定。减轻线粒体功能障碍的方法包括经典药物、天然化合物、补充剂、生活方式干预以及线粒体移植和基因治疗等创新方法。由于线粒体是几乎所有细胞功能所必需的基本细胞器,并且在神经退行性疾病中严重受损,因此开发新的方法来测量线粒体状态以及旨在改善其健康的新的治疗策略是至关重要的。
文章在《中国神经再生研究(英文版)》杂志2022年 4 月 4 期发表。


https://orcid.org/0000-0003-4603-396X (Stephana Carelli) 

Abstract: Fundamental organelles that occur in every cell type with the exception of mammal erythrocytes, the mitochondria are required for multiple pivotal processes that include the production of biological energy, the biosynthesis of reactive oxygen species, the control of calcium homeostasis, and the triggering of cell death. The disruption of anyone of these processes has been shown to impact strongly the function of all cells, but especially of neurons. In this review, we discuss the role of the mitochondria impairment in the development of the neurodegenerative diseases Amyotrophic Lateral Sclerosis, Parkinson’s disease and Alzheimer’s disease. We highlight how mitochondria disruption revolves around the processes that underlie the mitochondria’s life cycle: fusion, fission, production of reactive oxygen species and energy failure. Both genetic and sporadic forms of neurodegenerative diseases are unavoidably accompanied with and often caused by the dysfunction in one or more of the key mitochondrial processes. Therefore, in order to get in depth insights into their health status in neurodegenerative diseases, we need to focus into innovative strategies aimed at characterizing the various mitochondrial processes. Current techniques include Mitostress, Mitotracker, transmission electron microscopy, oxidative stress assays along with expression measurement of the proteins that maintain the mitochondrial health. We will also discuss a panel of approaches aimed at mitigating the mitochondrial dysfunction. These include canonical drugs, natural compounds, supplements, lifestyle interventions and innovative approaches as mitochondria transplantation and gene therapy. In conclusion, because mitochondria are fundamental organelles necessary for virtually all the cell functions and are severely impaired in neurodegenerative diseases, it is critical to develop novel methods to measure the mitochondrial state, and novel therapeutic strategies aimed at improving their health.

Key words: Alzheimer’s disease, amyotrophic lateral sclerosis, mitochondria, mitochondria modulation, mitochondrial dysfunction, mitochondrial health, Mitostress, Mitotracker, neurodegenerative disease, Parkinson’s disease