中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (4): 728-740.doi: 10.4103/1673-5374.322431

• 综述:退行性病与再生 • 上一篇    下一篇

微小RNA在肌萎缩性侧索硬化动物模型中的表达及潜在的治疗方法

  

  • 出版日期:2022-04-15 发布日期:2021-10-16

MicroRNA expression in animal models of amyotrophic lateral sclerosis and potential therapeutic approaches

Bridget Martinez1, 2, Philip V. Peplow3, *   

  1. 1Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA; 2Department of Medicine, St. Georges University School of Medicine, Grenada; 3Department of Anatomy, University of Otago, Dunedin, New Zealand
  • Online:2022-04-15 Published:2021-10-16
  • Contact: Philip V. Peplow, PhD, phil.peplow@otago.ac.nz.

摘要: Neural Regen Res:微小RNAs在肌萎缩性侧索硬化动物模型中的表达水平及可能作用 
    许多已鉴定的肌萎缩性侧索硬化相关基因编码RNA结合蛋白,如TDP-43、FUS和异质核核糖核蛋白A1。这些家族性肌萎缩侧索硬化相关基因与miRNA生物发生有关。已经检测了运动神经元疾病中的miRNA表达。在肌萎缩性侧索硬化患者的死后脊髓样本中发现成熟miRNA的总体减少和miRNA处理的改变。在肌萎缩性侧索硬化患者的脑脊液、血清和白细胞中观察到特异性miRNAs的表达改变。虽然已经报道了肌萎缩性侧索硬化患者和小鼠模型中miRNA表达的改变,但是与肌萎缩性侧索硬化相关的miRNA的作用还不完全清楚。在fALS-SOD1(G93A)小鼠模型中,肌肉特异性miRNA,miR-206的丢失加速了运动神经元丢失的发生,但运动神经元特异性miRNA是否可以作为潜在的治疗靶点尚不清楚。大量的miRNAs已被证明在各种肌萎缩性侧索硬化组织中失调,肌萎缩性侧索硬化患者运动神经元中的miRNAs整体下调。在肌萎缩性侧索硬化脊髓、肌肉组织和外周血单个核细胞中发现miRNA上调或下调。从肌萎缩性侧索硬化小鼠脊髓分离的培养室管膜干/祖细胞的神经元命运的改变与神经(miR-9,miR-124a)和细胞周期相关(miR-19a,miR-19b)miRNAs的表达显著相关,并且随着疾病的进展变得更加明显。目前尚不清楚这些失调的miRNAs在多大程度上影响了疾病的发生、发展和严重程度。受损的RNA加工和稳定性可能有助于肌萎缩性侧索硬化的发展。
来自新西兰奥塔哥大学的Bridget Martinez团队认为沉默SOD1的新疗法包括抑制性短发夹RNA、人工miRNA、ASOs和病毒传递的沉默元件。通过ASO或AAVrh10静脉注射靶向hSOD1的人工miRNA可延长肌萎缩性侧索硬化小鼠的寿命,提高肌肉强度。这些变化也可以通过静脉注射抗hSOD1的AAV9人工miRNA观察到。ASO治疗剂Nusinersen可用于治疗脊髓性肌萎缩症,为其他运动神经元疾病(包括肌萎缩性侧索硬化)的干预提供了一个成功的模式。SOD1 ASO已被证明对人类是安全的,目前正在进行一项临床试验,使用第二代ASO Tofersen(BIIB067,Ionis-SOD1Rx,ASO1)治疗SOD1相关的肌萎缩性侧索硬化。基因编辑是一种新兴的、有前途的治疗方法。CRISPR核酸酶和CRISPR碱基编辑都被用于靶向SOD1治疗肌萎缩性侧索硬化小鼠模型,改善运动功能和延长存活时间。肌萎缩性侧索硬化的遗传动物模型显示了已报道的肌萎缩性侧索硬化脊髓中miRNA表达的一些变化散发性肌萎缩性侧索硬化和家族性肌萎缩侧索硬化患者。在具有ASO 1和ASO 2的SOD1(G93A)大鼠中,人类SOD1 mRNA实现了类似的剂量依赖性降低。在动物模型中,抑制miR-129-5p可提高SOD1(G93A)小鼠的寿命,提高肌肉强度,减少神经肌肉连接变性,并有利于改善运动神经元存活率。抑制miR-155也与延长寿命有关,而miR-29a的降低有利于改善雄性小鼠的寿命,并增加SOD1(G93A)小鼠的肌肉强度。miR-17~92簇成员的过度表达可提高SOD1(G93A)小鼠运动神经元存活率。用人工miRNA治疗SOD1(G93A)动物,以提高其寿命和提高肌肉强度为目标。进一步研究肌萎缩性侧索硬化动物模型有必要验证这些发现,并确定特定的miRNA,其抑制或定向抗hSOD1可提高SOD1动物的寿命、提高肌肉强度、减少神经肌肉连接退化和改善SOD1(G93A)动物的运动神经元存活率。 
文章在《中国神经再生研究(英文版)》杂志2022年4 月 4 期发表。


https://orcid.org/0000-0001-5468-1989 (Philip V. Peplow)

Abstract: A review of recent animal models of amyotrophic lateral sclerosis showed a large number of miRNAs had altered levels of expression in the brain and spinal cord, motor neurons of spinal cord and brainstem, and hypoglossal, facial, and red motor nuclei and were mostly upregulated. Among the miRNAs found to be upregulated in two of the studies were miR-21, miR-155, miR-125b, miR-146a, miR-124, miR-9, and miR-19b, while those downregulated in two of the studies included miR-146a, miR-29, miR-9, and miR-125b. A change of direction in miRNA expression occurred in some tissues when compared (e.g., miR-29b-3p in cerebellum and spinal cord of wobbler mice at 40 days), or at different disease stages (e.g., miR-200a in spinal cord of SOD1(G93A) mice at 95 days vs. 108 and 112 days). In the animal models, suppression of miR-129-5p resulted in increased lifespan, improved muscle strength, reduced neuromuscular junction degeneration, and tended to improve motor neuron survival in the SOD1(G93A) mouse model. Suppression of miR-155 was also associated with increased lifespan, while lowering of miR-29a tended to improve lifespan in males and increase muscle strength in SOD1(G93A) mice. Overexpression of members of miR-17~92 cluster improved motor neuron survival in SOD1(G93A) mice. Treatment with an artificial miRNA designed to target hSOD1 increased lifespan and improved muscle strength in SOD1(G93A) animals. Further studies with animal models of amyotrophic lateral sclerosis are warranted to validate these findings and identify specific miRNAs whose suppression or directed against hSOD1 results in increased lifespan, improved muscle strength, reduced neuromuscular junction degeneration, and improved motor neuron survival in SOD1(G93A) animals.

Key words: amyotrophic lateral sclerosis, animal model, brain, brainstem, microRNA, motor neuron degeneration, spinal cord, therapeutic approaches