中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (4): 748-753.doi: 10.4103/1673-5374.322446

• 综述:周围神经损伤修复保护与再生 • 上一篇    下一篇

GDNF挽救:GDNF传递对运动神经元和神经的影响及周围神经损伤后肌肉的重新神经支配

  

  • 出版日期:2022-04-15 发布日期:2021-10-16

GDNF to the rescue: GDNF delivery effects on motor neurons and nerves, and muscle re-innervation after peripheral nerve injuries

Alberto F. Cintrón-Colón, Gabriel Almeida-Alves, Juliana M. VanGyseghem, John M. Spitsbergen*   

  1. Biological Sciences Department, Western Michigan University, Kalamazoo, MI, USA
  • Online:2022-04-15 Published:2021-10-16
  • Contact: John M. Spitsbergen, PhD, john.spitsbergen@wmich.edu.
  • Supported by:
    This work was funded by the NIH Grant 1R15AG022908-01A2 and the Western Michigan University (to JMS).

摘要: Neural Regen Res: 神经营养因子GDNF挽救:周围神经损伤潜在治疗方法
周围神经损伤通常是由外伤引起的,比如交通事故。周围神经被切断,导致运动神经元死亡和潜在的肌肉萎缩。目前治疗周围神经病变,特别是神经间隙较大(≥3cm)的病变的金标准是在发生神经根撕脱伤的情况下使用自体神经移植或再植入。如果不及早治疗,运动神经元变性和轴突再生丧失可能发生,导致功能丧失。虽然有外科手术,病人往往不能完全康复,生活质量恶化。周围神经再生有限,通常由雪旺细胞和神经营养因子介导,如胶质细胞源性神经营养因子,如沃勒氏变性。胶质细胞源性神经营养因子是一种促进运动神经元存活和突起生长的神经营养因子。胶质细胞源性神经营养因子在不同形式的神经损伤中表达上调,如轴突切断、坐骨神经挤压和压迫等,因此探索这种蛋白作为周围神经损伤的潜在治疗方法引起了极大的兴趣。外源性胶质细胞源性神经营养因子应用于周围神经损伤的实验模型,在再生和功能恢复方面显示出积极的作用。前期研究认为GDNF是一种分布于周围神经系统中的蛋白质,其合成和分泌发生在各种细胞中,包括星形胶质细胞、少突胶质细胞和雪旺细胞等胶质细胞;运动神经元、肠神经、交感神经和多巴胺能神经元等神经元;以及骨骼肌等靶组织。研究GDNF的另一个兴趣是促进运动神经元的存活、损伤后髓鞘的增强、促进神经突起的生长以及作为突触素促进神经肌肉连接处的终末分支和重塑。不受控制的GDNF分布可能导致不规则的出芽、轴突和神经卡压。最近,研究人员在开发具有生物相容性且具有足够机械强度的导管方面取得了进展,以帮助受损神经元和雪旺细胞免于潜在凋亡。
来自美国西密歇根大学的John M. Spitsbergen团队认为周围神经损伤后功能的错误恢复归因于运动神经元再生轴突的能力持续退化和降低,导致慢性失神经肌肉。即使存在周围神经损伤的外科修复,患者的功能恢复仍然效率低下,并可能导致长期或终身功能障碍。GDNF是一种神经营养因子,由于其轴突生长能力、在神经元分化中的作用以及作为运动神经元有效生存因子的作用而引起人们的兴趣。尽管GDNF对运动神经元的促存活作用显示出良好的应用前景,但要传递这种蛋白还是很有挑战性的。因此,需要进一步研究以了解治疗周围神经损伤所需的最佳蛋白质量和时间,并更好地开发将外源性GDNF保持在正确位置的方法。电肌肉刺激和运动可作为术后辅助治疗。电肌肉刺激增加了营养因子的水平,为轴突再生提供了积极影响。运动以活动依赖的方式触发骨骼肌GDNF的释放,并逆行运至运动神经元的胞体,从而触发促存活基因。找出GDNF治疗的合适剂量、时间和给药方式,并在康复过程中与适当的运动疗法或电肌肉刺激相结合,可以改善和提高伤后患者的生活质量。 
文章在《中国神经再生研究(英文版)》杂志2022年 4月 4 期发表。

https://orcid.org/0000-0003-3295-3896 (John M. Spitsbergen); https://orcid.org/0000-0001-7363-6497 (Alberto F. Cintrón-Colón) 

Abstract: Peripheral nerve injuries commonly occur due to trauma, like a traffic accident. Peripheral nerves get severed, causing motor neuron death and potential muscle atrophy. The current golden standard to treat peripheral nerve lesions, especially lesions with large (≥ 3 cm) nerve gaps, is the use of a nerve autograft or reimplantation in cases where nerve root avulsions occur. If not tended early, degeneration of motor neurons and loss of axon regeneration can occur, leading to loss of function. Although surgical procedures exist, patients often do not fully recover, and quality of life deteriorates. Peripheral nerves have limited regeneration, and it is usually mediated by Schwann cells and neurotrophic factors, like glial cell line-derived neurotrophic factor, as seen in Wallerian degeneration. Glial cell line-derived neurotrophic factor is a neurotrophic factor known to promote motor neuron survival and neurite outgrowth. Glial cell line-derived neurotrophic factor is upregulated in different forms of nerve injuries like axotomy, sciatic nerve crush, and compression, thus creating great interest to explore this protein as a potential treatment for peripheral nerve injuries. Exogenous glial cell line-derived neurotrophic factor has shown positive effects in regeneration and functional recovery when applied in experimental models of peripheral nerve injuries. In this review, we discuss the mechanism of repair provided by Schwann cells and upregulation of glial cell line-derived neurotrophic factor, the latest findings on the effects of glial cell line-derived neurotrophic factor in different types of peripheral nerve injuries, delivery systems, and complementary treatments (electrical muscle stimulation and exercise). Understanding and overcoming the challenges of proper timing and glial cell line-derived neurotrophic factor delivery is paramount to creating novel treatments to tend to peripheral nerve injuries to improve patients’ quality of life.

Key words: electrical muscle stimulation, exercise, glial cell line-derived neurotrophic factor, glial cell line-derived neurotrophic factor delivery, motor neuron, nerve gap, neurotrophic factor, peripheral nerve injury, Schwann cells, skeletal muscle atrophy