中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (5): 983-986.doi: 10.4103/1673-5374.324831

• 综述:退行性病与再生 • 上一篇    下一篇

超高场扩散MRI对亨廷顿舞蹈病R6 / 1小鼠模型早期神经连接特征的初步检查

  

  • 出版日期:2022-05-15 发布日期:2021-11-08

Preliminary examination of early neuroconnectivity features in the R6/1 mouse model of Huntington’s disease by ultra-high field diffusion MRI

Rodolfo G. Gatto1, *, #, Carina Weissmann2, #   

  1. 1Department of Bioengineering, the University of Illinois at Chicago, Chicago, IL, USA; 2Instituto de Fisiología Biología Molecular y Neurociencias-IFIBYNE-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
  • Online:2022-05-15 Published:2021-11-08
  • Contact: Rodolfo G. Gatto, MD, PhD, rgatto@uic.edu or rodogatto@gmail.com.
  • Supported by:
    This work was supported in part by the High Magnetic Field Laboratory (NHMFL) and Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) under Magnetic Laboratory Visiting Scientist Program Award, No. VSP#327 (to RG).

摘要: Neural Regen Res:UHF-dMRI 可加快亨廷顿舞蹈病患者的早期诊断
在过去的几十年中,对与亨廷顿舞蹈病(HD)相关的遗传,细胞和微结构改变的理解的不断进步,使人们对这种进行性和致命性疾病的理解得到了进一步的发展。然而,与早期神经病理改变,神经炎症,神经元连接性恶化和代偿机制有关的事件仍是未知之数。超高场扩散MRI(UHFD-dMRI)技术可有助于更全面地分析HD早期微结构变化,评估早期成像的微结构参数是否可能与组织学生物标志物相关联。UHF-dMRI和线圈设计的稳步发展提高了成像分辨率,可以更详细地捕获大脑组织中的结构变化。
为此,来自伊利诺伊大学芝加哥分校的Rodolfo Gabriel Gatto团队在R6 / 1小鼠细胞系的纵向离体模型上运用MRI技术进行了脑萎缩相关研究以及组织学评估。他们认为在至少6个非共线方向上应用扩散梯度,可以得到每个像素计算扩散张量和纤维方向的平均值(由张量的主要特征向量和颜色编码向量表示),从而得出位置和方向。而且根据扩散率参数进行复杂计算,扩散张量成像(DTI)可以估计纤维组织并量化分数各向异性(FA)参数。Gatto团队在UHF-dMRI(16.7T)装置上对R6 / 1脑样本进行了离体研究,评估脑组织中的高宏观细节。Gatto等人使用生物成像技术,通过调整磁场的特性和梯度强度,已经在疾病的早期阶段监测到特定的参数。因此,UHF-MRI代表了一种理想的方法,其结合更复杂的神经病理学分析可以加快发现新的成像生物标志物,推进HD患者的早期诊断和神经监测。
文章在《中国神经再生研究(英文版)》杂志2022年5月5期发表。

Abstract: During the last decades, advances in the understanding of genetic, cellular, and microstructural alterations associated to Huntington’s disease (HD) have improved the understanding of this progressive and fatal illness. However, events related to early neuropathological events, neuroinflammation, deterioration of neuronal connectivity and compensatory mechanisms still remain vastly unknown. Ultra-high field diffusion MRI (UHFD-MRI) techniques can contribute to a more comprehensive analysis of the early microstructural changes observed in HD. In addition, it is possible to evaluate if early imaging microstructural parameters might be linked to histological biomarkers. Moreover, qualitative studies analyzing histological complexity in brain areas susceptible to neurodegeneration could provide information on inflammatory events, compensatory increase of neuroconnectivity and mechanisms of brain repair and regeneration. The application of ultra-high field diffusion-MRI technology in animal models, particularly the R6/1 mice (a common preclinical mammalian model of HD), provide the opportunity to analyze alterations in a physiologically intact model of the disease. Although some disparities in volumetric changes across different brain structures between preclinical and clinical models has been documented, further application of different diffusion MRI techniques used in combination like diffusion tensor imaging, and neurite orientation dispersion and density imaging  have proved effective in characterizing early parameters associated to alteration in water diffusion exchange within intracellular and extracellular compartments in brain white and grey matter. Thus, the combination of diffusion MRI imaging techniques and more complex neuropathological analysis could accelerate the discovery of new imaging biomarkers and the early diagnosis and neuromonitoring of patients affected with HD.

Key words: brain repair, diffusion tensor imaging, Huntington’s disease, neurite orientation dispersion and density imaging, neuroconnectivity, neuroinflammation, neuroplasticity, neuroregeneration, R6/1 mice, ultra-high field diffusion MRI