中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (6): 1199-1209.doi: 10.4103/1673-5374.327326

• 综述:视神经损伤修复保护与再生 • 上一篇    下一篇

视网膜再生需要动态Notch信号

  

  • 出版日期:2022-06-15 发布日期:2021-12-16

Retinal regeneration requires dynamic Notch signaling

Leah J. Campbell, Jaclyn L. Levendusky, Shannon A. Steines, David R. Hyde*   

  1. Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
  • Online:2022-06-15 Published:2021-12-16
  • Contact: David R. Hyde, PhD, dhyde@nd.edu.
  • Supported by:
    This work was supported by National Eye Institute R01-EY024519 and U01-EY027267 (to DRH) and the Center for Zebrafish Research, University of Notre Dame.

摘要: Neural Regen Res:基于 Notch 的疗法修复视网膜损伤仍需进一步验证
成年斑马鱼的视网膜损伤会诱导Müller胶质细胞重编程,从而产生神经元祖细胞,该细胞增殖并分化为视网膜神经元。要使Müller胶质细胞在未受损的视网膜中保持静止状态,就必须使用Notch信号这种已知的基本机制来驱动细胞之间的通信,并且必须对Notch信号进行抑制才能使Müller胶质细胞重新进入细胞周期。
来自美国圣母大学的David R. Hyde团队认为,Hippo 通路是抑制Müller神经胶质重编程和增殖的重要分子机制。在小鼠视网膜损伤后,Hippo通路效应子 Yes 相关蛋白 (Yap)上调,表明Müller胶质细胞激活的细胞周期基因上调。然而,Yap在受损视网膜中的持续活动被活跃的Hippo信号传导阻止,该信号使 Yap 磷酸化,阻止其与 TEAD 转录因子的相互作用。在斑马鱼视网膜中,Yap1 在反应性 Müller 胶质细胞中上调,Yap1 的敲低或 Yap1/TEAD 相互作用的药理学抑制显示可减少光损伤视网膜中的 Müller 胶质细胞增殖。最近的研究表明,Hippo 通路与其他主要信号通路相互作用,Hippo 和Notch通路间调节Müller 胶质细胞激活的特定串扰需要进一步探索。最近的研究描述了 Notch 信号的作用,主要是作为 Müller 神经胶质细胞静止的正调节剂和增殖抑制剂,但是再生斑马鱼视网膜中单个 Notch 受体的敲低表明 Notch 信号在再生过程中的作用可能是动态的。
文章在《中国神经再生研究(英文版)》杂志2022年6 月6 期发表。

Abstract: Retinal damage in the adult zebrafish induces Müller glia reprogramming to produce neuronal progenitor cells that proliferate and differentiate into retinal neurons. Notch signaling, which is a fundamental mechanism known to drive cell-cell communication, is required to maintain Müller glia in a quiescent state in the undamaged retina, and repression of Notch signaling is necessary for Müller glia to reenter the cell cycle. The dynamic regulation of Notch signaling following retinal damage also directs proliferation and neurogenesis of the Müller glia-derived progenitor cells in a robust regeneration response. In contrast, mammalian Müller glia respond to retinal damage by entering a prolonged gliotic state that leads to additional neuronal death and permanent vision loss. Understanding the dynamic regulation of Notch signaling in the zebrafish retina may aid efforts to stimulate Müller glia reprogramming for regeneration of the diseased human retina. Recent findings identified DeltaB and Notch3 as the ligand-receptor pair that serves as the principal regulators of zebrafish Müller glia quiescence. In addition, multi-omics datasets and functional studies indicate that additional Notch receptors, ligands, and target genes regulate cell proliferation and neurogenesis during the regeneration time course. Still, our understanding of Notch signaling during retinal regeneration is limited. To fully appreciate the complex regulation of Notch signaling that is required for successful retinal regeneration, investigation of additional aspects of the pathway, such as post-translational modification of the receptors, ligand endocytosis, and interactions with other fundamental pathways is needed. Here we review various modes of Notch signaling regulation in the context of the vertebrate retina to put recent research in perspective and to identify open areas of inquiry.

Key words: differentiation, gliosis, Müller glia, neuronal progenitor cell, Notch signaling, proliferation, quiescence, retinal development, retinal regeneration, zebrafish