中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (6): 1165-1171.doi: 10.4103/1673-5374.327327

• 综述:神经损伤修复保护与再生 •    下一篇

束状和伸长蛋白zeta-1在神经回路建立和神经系统疾病中的重要性

  

  • 出版日期:2022-06-15 发布日期:2021-12-16

The importance of fasciculation and elongation protein zeta-1 in neural circuit establishment and neurological disorders

Rafhanah Banu Bte Abdul Razar1, 2, 3, #, Yinghua Qu1, 2, #, Saravanan Gunaseelan1, 2, John Jia En Chua1, 2, 3, 4, 5, *   

  1. 1Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; 2LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore; 3Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore; 4Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; 5Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
  • Online:2022-06-15 Published:2021-12-16
  • Contact: John Jia En Chua, PhD, phsjcje@nus.edu.sg.
  • Supported by:
    This work was supported by funding from the Singapore Ministry of Education (T1-2015 Apr-03), the National University of Singapore, and from Institute for Health Innovation and Technology to JJEC.

摘要: Neural Regen Res:束状和伸长蛋白zeta-1功能紊乱可导致神经发育障碍
受精神分裂症影响的患者中,束状和伸长蛋白zeta-1 (FEZ1) 基因多态性和 mRNA 表达降低。尽管其病因和病理生理学复杂,但精神分裂症现在被广泛认为是一种神经发育障碍,其根源在于影响大脑发育过程中神经回路建立和优化的扰动。特别是涉及背外侧前额叶皮层和海马结构及其相关网络的神经回路异常。对精神分裂症患者大脑的磁共振成像研究表明,在精神病发作时,已经可以检测到显著的体积减少,特别是在颞叶和前额叶皮质中,与灰质和白质的逐渐减少有关,并且随着疾病的进展而进一步恶化。在细胞水平上,对树突长度、复杂性和脊柱密度的减少诱导的突触小泡释放缺陷的观察进一步支持了受影响区域神经元之间突触连接的改变或丧失。仅失去FEZ1就足以破坏神经元的发育及其形成的网络。另一个受精神分裂症相关基因组蛋白去乙酰化酶 11 (HDAC11) 的缺失导致海马中 FEZ1 的表达降低。此外,紊乱的突触功能已被确定为各种神经精神疾病的共同点。在没有FEZ1的情况下观察到的突触数量减少和突触中断证明其不仅参与受精神分裂症,还参与其他神经精神疾病。
    来自新加坡国立大学的John Jia En Chua团队认为,使用小鼠模型的研究部分证实了FEZ1功能的扰动会导致与神经精神疾病相关的行为表型。FEZ1 基因敲除小鼠表现出由伏隔核中多巴胺能信号增加引起的过度活跃表型,这让人想起在精神分裂症患者中的观察结果。FEZ1 在抑制性神经元中的表达进一步表明,多巴胺能传递的改变可能源于 FEZ1 缺陷抑制性神经元中γ-氨基丁胺能传递受损。这一发现意义重大,因为多巴胺能、谷氨酸能和γ-氨基丁胺能神经递质系统的扰动都与导致精神分裂症有关。FEZ1 在大脑和周围神经系统中神经元网络的发育、形成和维持中的重要性。 值得注意的是,改变的 FEZ1 功能会导致神经元网络的发育和维持异常,这些神经元网络与涉及认知和运动缺陷的神经发育和神经退行性疾病相关。 进一步阐明蛋白质及其功能将为我们理解神经元如何连接在一起以实现大脑及其相关神经元网络的正常功能提供重要见解。
文章在《中国神经再生研究(英文版)》杂志2022年 6月 6 期发表。

Abstract: The human brain contains an estimated 100 billion neurons that must be systematically organized into functional neural circuits for it to function properly. These circuits range from short-range local signaling networks between neighboring neurons to long-range networks formed between various brain regions. Compelling converging evidence indicates that alterations in neural circuits arising from abnormalities during early neuronal development or neurodegeneration contribute significantly to the etiology of neurological disorders. Supporting this notion, efforts to identify genetic causes of these disorders have uncovered an over-representation of genes encoding proteins involved in the processes of neuronal differentiation, maturation, synaptogenesis and synaptic function. Fasciculation and elongation protein zeta-1, a Kinesin-1 adapter, has emerged as a key central player involved in many of these processes. Fasciculation and elongation protein zeta-1-dependent transport of synaptic cargoes and mitochondria is essential for neuronal development and synapse establishment. Furthermore, it acts downstream of guidance cue pathways to regulate axo-dendritic development. Significantly, perturbing its function causes abnormalities in neuronal development and synapse formation both in the brain as well as the peripheral nervous system. Mutations and deletions of the fasciculation and elongation protein zeta-1 gene are linked to neurodevelopmental disorders. Moreover, altered phosphorylation of the protein contributes to neurodegenerative disorders. Together, these findings strongly implicate the importance of fasciculation and elongation protein zeta-1 in the establishment of neuronal circuits and its maintenance.

Key words: fasciculation and elongation protein zeta-1, neurological disorder, neuronal development, neuronal differentiation, neuronal networks, synapse formation, synaptic function