中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (9): 1965-1966.doi: 10.4103/1673-5374.335149

• 观点:神经损伤修复保护与再生 • 上一篇    下一篇

我们能否通过针对微生物群的策略促进神经再生? 神经生物学的新概念

  

  • 出版日期:2022-09-15 发布日期:2022-03-05

Can we promote neural regeneration through microbiota-targeted strategies? Introducing the new concept of neurobiotics

Celia Herrera-Rincon, Julia Murciano-Brea, Stefano Geuna*   

  1. Department of Biodiversity, Ecology & Evolution, and Modeling, Data Analysis & Computational Tools for Biology Research Group, Biomathematics Unit, Complutense University of Madrid, Madrid, Spain (Herrera-Rincon C, Murciano-Brea J) 
    Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Turin, Italy (Geuna S)
  • Online:2022-09-15 Published:2022-03-05
  • Contact: Stefano Geuna, MD, stefano.geuna@unito.it.
  • Supported by:
    The present work was supported by Templeton World Charity Foundation Independent Research Fellowship to CHR (TWCF0241 & TWCF0503). 

摘要: 神经生物学的新概念与神经再生
针对微生物群的干预措施在治疗涉及神经损伤和/或退化的神经系统疾病方面的潜力,建议采用“神经生物学”的新科学概念来命名发挥肠道微生物群介导作用的物质(主要是益生菌和益生元,但也有特定饮食、微生物群移植或抗生素)。在促进神经系统疾病后神经修复和再生方面有潜在的应用效果。肠道生态失调是许多神经创伤和神经退行性疾病的核心,它会破坏血脑屏障的通透性并引发炎症反应,从而加重症状。肠道微生物群失调(在神经系统损伤之前使用广谱抗生素)已被证明会降低缺血鼠模型的存活率。与神经系统疾病相关的肠道菌群失调可能有效改善大脑中的破坏性变化。许多临床前和临床数据已经证明了益生干预(益生元、益生菌、饮食、粪便移植等)对治愈肠道菌群失调的功效。现在是时候将研究扩展到特定的治疗方法,通过调节微生物群组成和治疗神经创伤引起的肠道菌群失调,这里以“神经生物学”的新概念命名,从而改善神经修复和再生。使用脊髓损伤小鼠进行的临床前研究表明,益生菌可在肠道相关淋巴组织中诱导保护性免疫反应,增强神经保护作用并改善运动恢复。此外,粪便微生物群的移植可以改善卒中引起的神经解剖学损伤,从而改善卒中动物模型的功能。除了调节炎症和提供神经保护外,神经生物学还可能通过诱导神经发生来发挥作用。
来自意大利都灵大学 Cavalieri Ottolenghi 神经科学研究所的Stefano Geuna团队认为,引入“神经生物学”的新科学概念可以促进关于如何靶向肠道微生物群以开发改善神经修复和再生新方法研究的进一步进展。专门调节肠道微生物群的生活方式可以影响神经系统病变的发生、进展和/或结果。与食物相关的因素似乎是促进神经修复的有希望的方法,因为肠道微生物群受到饮食的反复调节。平衡增加的厚壁菌门:拟杆菌门比率和/或促进细菌代谢物如短链脂肪酸(主要来自膳食纤维和抗性淀粉)产生的饮食干预可能是很好的候选者。鉴于神经系统疾病的临床发病率很高,并且神经变性和/或损伤后的临床结果往往远不能令人满意,神经修复和再生研究尤为重要。因此,微生物群靶向治疗策略对神经系统疾病产生积极影响的可能性代表了对“神经生物学”进行新研究的前所未有的刺激。
文章在《中国神经再生研究(英文版)》杂志2022年9 月 9 期发表。

Abstract: The human body is populated by a large number of microbial colonies, with an estimated 10–100 trillion microbes. The total genome size of human microbial colonies by far overwhelms the size of the host’s genome. This heterogenous group of microbial colonies (primarily bacteria, but also archaea, eukaryotes and viruses) is referred to with the term microbiota, and although most of them populate the gut, microbes are also detectable in many other organs of the body, especially in the distal tracts of the genitourinary system and the skin. Over the last years, an increasing amount of evidence has been accumulated on how the microbiota exerts a significant influence on the development and physiology of the human body. The nervous system interacts extensively with the microbiota. To refer to communication between gut microbes and neurons, we have recently suggested that the traditionally established term microbiota-gut-brain axis be replaced with a more specific brain-bacteria axis, which emphasizes the direct interrelationship between these two entities (Herrera-Rincon et al., 2020; Murciano-Brea et al., 2021).