中国神经再生研究(英文版) ›› 2023, Vol. 18 ›› Issue (10): 2093-2107.doi: 10.4103/1673-5374.369099

• 综述:脑损伤修复保护与再生 •    下一篇

双光子激发荧光激光扫描显微镜与缺血性脑卒中后脑支持系统:从静态到动态的活体观察

  

  • 出版日期:2023-10-15 发布日期:2023-03-28
  • 基金资助:
    国家自然科学基金;湖北省自然科学基金

From static to dynamic: live observation of the support system after ischemic stroke by two photon-excited fluorescence laser-scanning microscopy

Xuan Wu1, Jia-Rui Li1, Yu Fu2, Dan-Yang Chen1, Hao Nie2, *, Zhou-Ping Tang1, *   

  1. 1Department of Neurology, 2Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
  • Online:2023-10-15 Published:2023-03-28
  • Contact: Hao Nie, MD, haonie@tjh.tjmu.edu.cn; Zhou-Ping Tang, MD, ddjtzp@163.com.
  • Supported by:
    This work was supported by grants from the National Natural Science Foundation of China, Nos. 92148206, 82071330 (to ZPT), and 82201745 (to HN); the Natural Science Foundation of Hubei Province, China, Nos. 2021BCA109 (to ZPT) and 2021CFB067 (to HN).

摘要:

缺血性脑卒中是世界范围内导致死亡和残疾的最重要原因之一;然而,治疗效果和研究进展仍然不能令人满意。作为神经血管单元的关键支持系统和重要组成部分,胶质细胞、血管(包括血脑屏障)缺血性脑卒中后,多种损伤机制共同发挥作用,除了重要的神经元组分的细胞死亡外,神经支持系统也发挥了重要作用,其过程包括维持大脑平衡、支持神经元功能和对损伤作出反应。然而,以往的研究大多集中在死后动物身上,不可避免地缺乏大量关于缺血性脑卒中后动态变化的关键信息。因此,迫切需要一种用于活体动物研究的高精度技术。双光子激发荧光激光扫描显微镜(2PLSM)是一种强大的成像技术,可以实现高时空分辨率的活体观察,提供大脑皮层的三维结构信息、多细胞成分间的通讯信息,实现结构和功能的共成像。这种技术将现有的研究模式从静态转向动态,从平面转向立体,从单细胞功能转向多细胞相互交流,从而为确定完整大脑缺血性脑卒中后的病理生理机制提供了直接和可靠的证据。文章讨论了使用2PLSM系统对缺血性脑卒中后支持系统进行研究的重大发现,强调了对大脑支持系统网络中的细胞行为和细胞相互作用进行动态观察的重要性。展示了2PLSM良好的应用前景和优势,并预测了缺血性脑卒中研究未来发展方向和研究热点。

https://orcid.org/0000-0002-4153-8590 (Zhou-Ping Tang)

Abstract: Ischemic stroke is one of the most common causes of mortality and disability worldwide. However, treatment efficacy and the progress of research remain unsatisfactory. As the critical support system and essential components in neurovascular units, glial cells and blood vessels (including the blood-brain barrier) together maintain an optimal microenvironment for neuronal function. They provide nutrients, regulate neuronal excitability, and prevent harmful substances from entering brain tissue. The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis, supporting neuronal function, and reacting to injuries. However, most studies have focused on postmortem animals, which inevitably lack critical information about the dynamic changes that occur after ischemic stroke. Therefore, a high-precision technique for research in living animals is urgently needed. Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions. Two-photon fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure, information on multicellular component interactions, and provide images of structure and function in the cranial window. This technique shifts the existing research paradigm from static to dynamic, from flat to stereoscopic, and from single-cell function to multicellular intercommunication, thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain. In this review, we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy, highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain’s support systems. We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.

Key words: astrocytes, blood-brain barrier, calcium signaling, glymphatic system, ischemic stroke, microglia, network, remodel, two-photon fluorescence laser-scanning microscopy, vessels