中国神经再生研究(英文版) ›› 2024, Vol. 19 ›› Issue (11): 2543-2552.doi: 10.4103/1673-5374.392888

• 原著:神经损伤修复保护与再生 • 上一篇    

利于视网膜色素变性模型小鼠光感受器存活的最佳经角膜电刺激参数

  

  • 出版日期:2024-11-15 发布日期:2024-03-29
  • 基金资助:
    研究受挪威研究委员会;挪威奥斯陆奥斯陆大学医院眼科;挪威奥斯陆奥斯陆大学医院医学生物化学系;挪威盲人和弱视协会(TPU);中国台湾科学技术部;土耳其科学技术研究委员会; BrightFocus 基金会(;马萨诸塞州狮子基金会;国家眼科研究所拨款;哈佛神经发现中心资助;美国国防部; NIH/NEI 向 Schepens 眼科研究所提供的视觉研究核心资助;挪威东南部地区卫生局和挪威盲人协会的支持

Optimal transcorneal electrical stimulation parameters for preserving photoreceptors in a mouse model of retinitis pigmentosa

Sam Enayati1, 2, 3, 4, Karen Chang1, 3, Anton Lennikov1, 3, Menglu Yang1, Cherin Lee1, Ajay Ashok1, 3, Farris Elzaridi1, Christina Yen1, Kasim Gunes1, 5, Jia Xie1, Kin-Sang Cho1, Tor Paaske Utheim1, 2, 3, 4, Dong Feng Chen1, *#br#   

  1. 1Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; 2Institute of clinical medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; 3Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway; 4Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway; 5Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkiye
  • Online:2024-11-15 Published:2024-03-29
  • Contact: Dong Feng Chen, MD, PhD, dongfeng_chen@meei.harvard.edu.
  • Supported by:
    This study was supported by The Norwegian Research Council; Department of Ophthalmology, Oslo University Hospital, Oslo, Norway (to TPU); Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway (to TPU); The Norwegian Association for the Blind and Partially Sighted (to TPU); The Ministry of Science and Technology of Taiwan, China MOST 105-2917-I-002-031, MOST 109-2917-I-564-032 (to KC); The Scientific and Technological Research Council of Turkiye – TUBITAK (to KG);  BrightFocus Foundation (to KSC); the Massachusetts Lions Foundation (to KSC); National Eye Institute Grant EY031696 (to DFC); Harvard NeuroDiscovery Center Grant (to DFC); Department of Defense (USA) HT9425-23-1-1045 (to DFC and AL); Core Grant for Vision Research from NIH/NEI to the Schepens Eye Research Institute (P30EY003790). South-Eastern Norway Regional Health Authority and the Norwegian Society of the Blind (to TPU).

摘要:

视网膜色素变性是一种遗传性视网膜疾病,会影响视杆和视锥细胞的光感受器,导致光感受器逐渐丧失。以往研究显示,电刺激有益于感光细胞的存活。实验旨在确定电刺激改善遗传性视网膜色素变性小鼠视功能的最佳刺激参数,并试图分析小鼠和人眼到达视网膜的电场。实验使用眼内针探头记录了C57BL/6J小鼠在经角膜电刺激过程中到达视网膜的矩形、正弦和斜坡波形和电压。为了研究视网膜色素变性 对光感受器的功能影响,实验使用了人类视网膜外植体培养物和视网膜色素变性模型Rhodopsin基因敲除Rho-/-小鼠,结果显示光感受器会随着年龄的增长而逐渐退化。以矩形和斜坡波形对体内 Rho-/- 小鼠进行2次为期 5 天的经角膜电刺激系列治疗后,分别通过视网膜电图和视运动反应评估小鼠的视网膜功能和视觉感知,以免疫标记评估小鼠视网膜中感光细胞和双极细胞的形态和生化变化。示波器记录显示,经角膜电刺激能有效地向视网膜输送矩形、正弦和斜坡波形,其中斜坡波形所需的电压最低。评估死后人眼与小鼠眼的总传导电阻表明,人眼的角膜到视网膜电阻较高。电刺激期间和之后的温度记录表明,体内温度无明显变化,体外温度仅有微弱上升(0.5-1.5 °C)。经角膜电刺激矩形+斜坡波形显著提高了S锥和M锥的存活率和功能,并根据视运动反应结果提高了视敏度。组织学和免疫标记显示,Rho-/-小鼠的光感受器存活率提高,核外层厚度改善,双极细胞萌发增加。这些结果表明,经角膜电刺激能有效地将电场传送到视网膜,提高人和小鼠视网膜中感光细胞的存活率,并增强 Rho-/- 小鼠的视觉功能。矩形和斜坡波形联合刺激能以微创方式利于视网膜色素变性光感受器的存活。

https://orcid.org/0000-0001-6283-8843 (Dong Feng Chen)

Abstract: Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors, leading to progressive photoreceptor loss. Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival. This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation (tcES) in mice affected by inherited retinal degeneration. Additionally, the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans. In this study, we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular, sine, and ramp waveforms. To investigate the functional effects of electrical stimulation on photoreceptors, we used human retinal explant cultures and rhodopsin knockout (Rho–/–) mice, demonstrating progressive photoreceptor degeneration with age. Human retinal explants isolated from the donors’ eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro. Photoreceptor density was evaluated by rhodopsin immunolabeling. In vivo Rho–/– mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms. Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response (OMR), respectively. Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas. Oscilloscope recordings indicated effective delivery of rectangular, sine, and ramp waveforms to the retina by transcorneal electrical stimulation, of which the ramp waveform required the lowest voltage. Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes. The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro (~0.5–1.5°C). Electrical stimulation increased photoreceptor survival in human retinal explant cultures, particularly at the ramp waveform. Transcorneal electrical stimulation (rectangular + ramp) waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results. Histology and immunolabeling demonstrated increased photoreceptor survival, improved outer nuclear layer thickness, and increased bipolar cell sprouting in Rho–/– mice. These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina, improves photoreceptor survival in both human and mouse retinas, and increases visual function in Rho–/– mice. Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion. 

Key words: bipolar cells, electrical stimulation, neuroprotection, photoreceptor degeneration, retina, retinal explants, retinitis pigmentosa, transcorneal electrical stimulation, waveform