中国神经再生研究(英文版) ›› 2025, Vol. 20 ›› Issue (4): 946-959.doi: 10.4103/NRR.NRR-D-23-01612

• 综述:视神经损伤修复保护与再生 • 上一篇    下一篇

小鼠Müller神经胶质细胞重编程的研究:十年回顾和未来展望

  

  • 出版日期:2025-04-15 发布日期:2024-06-30
  • 基金资助:
    国家自然科学基金重点项目(No.31930068)和国家重点研发计划(No.2018YFA0107302,2021YFA1101203)

Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future

Zhiyuan Yin# , Jiahui Kang# , Xuan Cheng, Hui Gao, Shujia Huo* , Haiwei Xu*   

  1. Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
  • Online:2025-04-15 Published:2024-06-30
  • Contact: Haiwei Xu, PhD, haiweixu2001@163.com; Shujia Huo, MD, bengkui8919@sina.com.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China, No. 31930068; National Key Research and Development Program of China, Nos. 2018YFA0107302 and 2021YFA1101203 (all to HX).

摘要:

视网膜神经元受损和丢失是视觉系统神经退行性疾病的特征,可能造成多种致盲性眼病。利用外源性和内源性干细胞实现向视网膜神经元分化是治疗神经退行性疾病的有效疗法。然而,供体细胞的来源、安全性和有效性等问题限制了外源性干细胞的应用。以Müller胶质细胞为代表的内源性干细胞在低等脊椎动物中表现出非凡的再生能力,然而,哺乳动物中Müller胶质细胞失去了重编程能力。分析Müller胶质细胞重编程能力的物种差异性,探索Müller胶质细胞重编程的策略并寻找更先进的重编程技术,对于提高哺乳动物中Müller胶质细胞的重编程能力具有重要的意义。文章总结更新了过去十年来在小鼠中成功地进行Müller胶质细胞重编程策略的最新进展,讨论了与Müller胶质细胞重编程相关的挑战,并结合神经系统再生的研究进展,提出了六种有前景的小鼠Müller胶质细胞重编程策略,包括表观遗传重塑、代谢调节、免疫调节、化学小分子诱导、细胞外基质重塑和细胞融合,为开发小鼠Müller胶质细胞重编程的新策略提供了理论基础。

https://orcid.org/0000-0002-8840-7918 (Haiwei Xu); https://orcid.org/0000-0001-7158-3803 (Shujia Huo)

Abstract: Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller gliaderived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.

Key words: cell fusion, chemical small-molecules, epigenetic,  extracellular matrix, immune, metabolic, mice, Müller glia, neurodegenerative diseases, reprogramming, retina regeneration