中国神经再生研究(英文版) ›› 2016, Vol. 11 ›› Issue (3): 400-401.doi: 10.4103/1673-5374.179040

• 观点:脑损伤修复保护与再生 • 上一篇    下一篇

胰岛素鼻腔给药对缺血性脑卒中的神经保护

  

  • 收稿日期:2015-11-12 出版日期:2016-03-15 发布日期:2016-03-15
  • 基金资助:

    V.N.博士收到美国国立卫生研究院糖尿病,消化道和肾脏疾病国立研究所(5R21-DK-084463-02)以及美国国立卫生研究院 - 美国国家衰老研究所(NIA)(1R01-AG-0287601-A2)资助

Intranasal insulin neuroprotection in ischemic stroke

Vasileios-Arsenios Lioutas, Vera Novak   

  1. Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
  • Received:2015-11-12 Online:2016-03-15 Published:2016-03-15
  • Contact: Vasileios-Arsenios Lioutas, M.D.,vlioutas@bidmc.harvard.edu.
  • Supported by:

    Dr VN has received grants from the NIH-National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (5R21-DK-084463-02 and 1R01 DK103902-01A1) and National Institute on Aging (NIA) (1R01-AG-0287601-A2) and National Institute of Diabetes and Digestive and Kidney Diseases (1R01DK103902-01A1) related to this study, and VN received salaries from these grants.
    The authors wish to thank Katharina Dormanns, Ph.D. candidate Brains Trust Research Group, BlueFern Supercomputing Unit (University of Canterbury, NZ), for her contribution in the design of the figure presented in the paper.

摘要:

在急性缺血性脑卒中治疗中,神经保护作用已引起了显著关注。神经保护是指旨在限制急性缺血性脑卒中相关损伤程度并促进天然存在的再生机制的策略和干预措施。急性缺血性损伤会触发一系列的细胞和分子水平事件,导致能量衰竭,最终造成神经元死亡:包括炎症、兴奋性毒性、细胞凋亡、活性氧和氮产物形成、线粒体功能衰竭及相关的缺血级联。目前在临床试验中使用的许多神经保护剂只是随着病程进行的特定单一步骤靶标,与此相反,胰岛素的作用是多效性的:它可以抑制促炎转录因子并可能限制炎症反应的不利影响。其通过减少组织因子和纤溶酶原激活物抑制剂-1水平产生抗血栓效果,并通过促进激活内皮型一氧化氮合成酶形成血管舒张作用;这两种作用可以促进侧支血管补充,增强溶栓的作用,最终降低脑梗死体积并改善长期功能结果。而胰岛素在调节大脑能量平衡方面也毫不逊色。除了急性期,胰岛素的作用能够延伸至亚急性和慢性期,具有强有力的抗凋亡作用,同时促进髓鞘和轴突再生以及大脑的功能连接和神经传递。在给药方面,鼻内途径呈现显著优势:这种吸收方式的发生主要通过细胞旁转运和细胞内吞作用以及存在于鼻腔的嗅觉及三叉神经神经元。而显著优势就是鼻腔给药可以绕过血脑屏障,实现快速、广泛的中枢神经系统渗透(在中枢神经系统检测给药1小时内起效)。综上所述,鼻内胰岛素给药具有许多急性脑卒中神经保护的理想性能,因为它的多功能作用机理,其具有适用性广,安全性高和中枢神经系统分布简易性等多种优势特性。但同时精心设计的动物和I期人体试验也是非常必要的,这可以改善我们对其在急性脑卒中中神经保护潜力。

Abstract:

Acute ischemic stroke (AIS) is a leading cause of death and long-term disability in the USA and worldwide. Significant advances in the last two decades have resulted in introduction of intravenous tissue plasminogen activator and more recently catheter based endovascular interventions in selected patients. These interventions are applicable to a limited number of patients fulfilling specific criteria; therefore neuroprotection has attracted significant attention. Neuroprotection refers to strategies and interventions aiming to limit the extent of AIS-related injury and facilitate the naturally occurring regenerative mechanisms. Acute ischemic injury triggers a series of events in a cellular and molecular level, resulting in energy failure and ultimately neuronal death: Inflammation, excitotoxicity, apoptosis, reactive oxygen and nitrogen species formation, mitochondrial failure have been implicated in the ischemic cascade. In contrast to many other neuroprotective agents used in past clinical trials targeting specific single steps along the process, insulin’s effects are pleiotropic: It suppresses pro-inflammatory transcription factors and might limit the detrimental effect of the inflammatory response. It produces an antithrombotic effect by decreasing the tissue factor and plasminogen activator inhibitor-1 levels and a vasodilatory effect by promoting activation of endothelial nitric oxide synthase; both actions could facilitate recruitment of collateral vessels and enhance the effect of thrombolysis, ultimately reducing the final infarct volume and improving long-term functional outcome. Insulin also favorably regulates cerebral energy homeostasis. In addition to the acute phase, insulin’s effects extend to the subacute and chronic phase, exerting a potent antiapoptotic effect and promoting myelin and neurite regeneration, neurotransmission and functional connectivity of the brain. The intranasal route presents significant advantages: The absorption occurs mostly through paracellular transport and endocytosis, following the course of olfactory and trigeminal neurons that are present in the nasal cavity. This offers the significant advantage of bypassing the blood-brain barrier and achieving rapid, widespread CNS penetration (detected in the CNS within 1 hour from administration). Intranasally administered insulin possesses many of the ideal properties for acute stroke neuroprotection, due to it plurifunctional mechanism of action, wide applicability, safety and simplicity of CNS distribution. Well-designed animal and phase I human studies are necessary to improve our understanding of its neuroprotective potential in acute stroke.