中国神经再生研究(英文版) ›› 2021, Vol. 16 ›› Issue (1): 186-191.doi: 10.4103/1673-5374.289436

• 原著:脊髓损伤修复保护与再生 • 上一篇    下一篇

新型组织工程神经导管修复损伤脊髓后的单向轴突再生

  

  • 出版日期:2021-01-15 发布日期:2020-11-26
  • 基金资助:

    徐氏实验室的研究得到了美国退伍军人事务部的NIH 1R01 100531、1R01 NS103481,优异奖I01 BX002356,I01 BX003705,I01 RX002687和Mari Hulman George捐赠基金的支持

Laminin-coated multifilament entubulation, combined with Schwann cells and glial cell line-derived neurotrophic factor, promotes unidirectional axonal regeneration in a rat model of thoracic spinal cord hemisection

Ling-Xiao Deng1, 2, Nai-Kui Liu1, 2, Ryan Ning Wen3, Shuang-Ni Yang1, 2, Xuejun Wen4, Xiao-Ming Xu1, 2, *   

  1. 1 Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA;   2 Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA;  3 Maggie L. Walker Governor’s School, Richmond, VA, USA;  4 Institute for Engineering and Medicine, Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
  • Online:2021-01-15 Published:2020-11-26
  • Contact: Xiao-Ming Xu, PhD, xu26@iupui.edu.
  • Supported by:
    Research in the Xu laboratory is supported by NIH 1R01 100531, 1R01 NS103481, Merit Review Award I01 BX002356, I01 BX003705, I01 RX002687 from the U.S. Department of Veterans Affairs, and Mari Hulman George Endowment Funds.

摘要:

生物材料桥接提供了可引导病变处的轴突生长的基底材料。为了获得有效的神经再生导向,有必要联合应用生物材料、细胞和营养因子。(1)实验评估了填充了不同密度层粘连蛋白包被的单向聚丙烯长纤维、许旺细胞、胶质细胞源性神经营养因子的聚(丙烯腈-共氯乙烯)神经导管桥接成年大鼠第10胸段脊髓半切缺损后促进神经再生的作用;(2)结果发现上述组织工程神经导管缩小了脊髓空洞,减轻了星形胶质细胞胶质增生和移植物边界处的炎症反应。层粘连蛋白包被的低密度长纤维为轴突再生提供了最有利的方向引导,且该作用在许旺细胞和胶质细胞源性神经营养因子的共同作用下增强;(3)这些结果表明,长纤维填充的神经导管,黏附分子层粘连蛋白,许旺细胞和胶质细胞源性神经营养因子的组合策略利于刺激脊髓损伤后方向性轴突再生。这项研究已于2015年10月29日获得印第安纳大学大学动物保护与使用委员会(IACUC#:11011)的批准。

https://orcid.org/0000-0002-7229-0081 (Xiao-Ming Xu)

Abstract: Biomaterial bridging provides physical substrates to guide axonal growth across the lesion. To achieve efficient directional guidance, combinatory strategies using permissive matrix, cells and trophic factors are necessary. In the present study, we evaluated permissive effect of poly (acrylonitrile-co-vinyl chloride) guidance channels filled by different densities of laminin-precoated unidirectional polypropylene filaments combined with Schwann cells, and glial cell line-derived neurotrophic factor for axonal regeneration through a T10 hemisected spinal cord gap in adult rats. We found that channels with filaments significantly reduced the lesion cavity, astrocytic gliosis, and inflammatory responses at the graft-host boundaries. The laminin coated low density filament provided the most favorable directional guidance for axonal regeneration which was enhanced by co-grafting of Schwann cells and glial cell line-derived neurotrophic factor. These results demonstrate that the combinatorial strategy of filament-filled guiding scaffold, adhesive molecular laminin, Schwann cells, and glial cell line-derived neurotrophic factor, provides optimal topographical cues in stimulating directional axonal regeneration following spinal cord injury. This study was approved by Indiana University Institutional Animal Care and Use Committees (IACUC #:11011) on October 29, 2015.

Key words: axonal regeneration, extracellular molecule, filament density, hemisection, laminin, neurotrophic factor, Schwann cell, spinal cord injury, thoracic, transplantation