中国神经再生研究(英文版) ›› 2021, Vol. 16 ›› Issue (10): 1901-1910.doi: 10.4103/1673-5374.308077

• 综述:神经损伤修复保护与再生 •    下一篇

轴突再生和发芽是神经系统疾病的潜在治疗靶点

  

  • 出版日期:2021-10-15 发布日期:2021-03-18

Axonal regeneration and sprouting as a potential therapeutic target for nervous system disorders

Katherine L. Marshall, Mohamed H. Farah*   

  1. Department of Neurology at Johns Hopkins School of Medicine, Baltimore, MD, USA
  • Online:2021-10-15 Published:2021-03-18
  • Contact: Mohamed H. Farah, PhD, mfarah2@jhmi.edu.
  • Supported by:
    This work was supported by the Muscular Dystrophy Association, No. W81XWH1910229 (to MHF) from Department of Defense’s Congressionally 
    Directed Medical Research Program, and Maryland Stem Cell Research Fund, No. 2019-MSCRFD-5093 (to MHF). 

摘要:

Neural Regen Res:药物增强轴突再生和代偿性发芽:神经系统疾病的潜在治疗策略

垂死性轴索病是许多神经系统疾病的标志,导致轴突与其靶点脱节,导致患者功能障碍。然而,在许多神经系统疾病的过程中,轴突试图通过再生或发芽重新与靶点建立连接,恢复突触功能。以肌萎缩性侧索硬化症为例,在疾病早期,远端运动轴突从神经肌肉接头(NMJ)缩回,NMJ处代偿性运动轴突萌发和神经支配很快被疾病进程追赶上。因此,增强外周轴突再生或代偿性发芽的潜在药物可能会增加靶组织的神经支配,减缓ALS等疾病进展,并在更长的时间内保持肌肉功能。

来自约翰霍普金斯医学院的Mohamed H. Farah团队最近研究显示,BACE1是一种膜结合的天冬氨酰蛋白酶,具有60多种已鉴定的底物,可改善神经损伤模型和SOD1G93A小鼠的代偿性发芽。Farah等人发现当抑制BACE1可大大提升轴突再生的速度,并且周围神经系统中BACE1水平与再生之间存在反比关系。通过研究损伤模型中BACE1的更多临床相关药理学抑制作用,研究者们发现运动神经元疾病结局可能通过增强周围运动轴突的生长而得到改善。用BACE抑制剂治疗野生型小鼠会导致神经挤压伤后加速再生,增加NMJ的神经支配以及更快恢复运动功能。在野生型小鼠中部分神经损伤后,用BACE抑制剂治疗激发了更多的轴端芽,即药物调节NMJ处可塑性可能是减轻运动神经元疾病症状的治疗靶点。

 

文章在《中国神经再生研究(英文版)》杂志20211010期发表。

https://orcid.org/0000-0002-4745-8030 (Mohamed H. Farah) 

Abstract: Nervous system disorders are prevalent health issues that will only continue to increase in frequency as the population ages. Dying-back axonopathy is a hallmark of many neurologic diseases and leads to axonal disconnection from their targets, which in turn leads to functional impairment. During the course of many of neurologic diseases, axons can regenerate or sprout in an attempt to reconnect with the target and restore synapse function. In amyotrophic lateral sclerosis (ALS), distal motor axons retract from neuromuscular junctions early in the disease-course before significant motor neuron death. There is evidence of compensatory motor axon sprouting and reinnervation of neuromuscular junctions in ALS that is usually quickly overtaken by the disease course. Potential drugs that enhance compensatory sprouting and encourage reinnervation may slow symptom progression and retain muscle function for a longer period of time in ALS and in other diseases that exhibit dying-back axonopathy. There remain many outstanding questions as to the impact of distinct disease-causing mutations on axonal outgrowth and regeneration, especially in regards to motor neurons derived from patient induced pluripotent stem cells. Compartmentalized microfluidic chambers are powerful tools for studying the distal axons of human induced pluripotent stem cells-derived motor neurons, and have recently been used to demonstrate striking regeneration defects in human motor neurons harboring ALS disease-causing mutations. Modeling the human neuromuscular circuit with human induced pluripotent stem cells-derived motor neurons will be critical for developing drugs that enhance axonal regeneration, sprouting, and reinnervation of neuromuscular junctions. In this review we will discuss compensatory axonal sprouting as a potential therapeutic target for ALS, and the use of compartmentalized microfluidic devices to find drugs that enhance regeneration and axonal sprouting of motor axons. 

Key words: amyotrophic lateral sclerosis, axonal regeneration, dying-back axonopathy, in vitro neuromuscular junction, iPSC-derived motor neurons, microfluidic device, motor axon sprouting