表1:神经修复组、神经端到端移位组和神经端到侧移位组在SMN中的差异
表2:神经修复组、神经端到端移位组和神经端到侧移位组在IN中的差异
总之,该研究表明,感觉运动网络和内感觉网络参与了神经重建后的大脑重塑,并确定了在网络活动中发挥作用的重要脑区。虽然神经重建后运动功能相关区域的RS FCs减少,但神经端到侧移位更有利于恢复患肢的控制能力,而神经修复则有利于感觉功能的恢复。神经转移后可能需要更长时间才能恢复正常的大脑活动。神经修复和神经端到端转移后,内感觉网络的活动主要与丘脑-皮层通路有关,而神经端到侧移位后,内感觉网络的活动与向认知和情感等高级功能相关脑区投射感觉间信号有关。该研究使人们对周围神经通路改变与大脑活动之间的相互作用过程有了更深入的了解,为通过调节特定脑区和网络来诱导所需的可塑性提供了理论依据。
当然该研究也存在一定局限性。该研究仅使用膈神经移位和雌性大鼠,性别对模型的潜在影响,以及其他神经移位手术中是否有类似的现象,以及哪种神经移位策略能够给患者带来更好的治疗效果,还需要进一步的研究。此外,目前有较少研究关注啮齿动物的ICA,由于静息态脑网络的标准不完善,无法精确识别具体的功能网络成分。同样,啮齿动物和人类存在不同之处,应谨慎将该研究的结论应用于患者。最后,该研究侧重于在大脑可塑性趋于稳定的特定时间点进行组间比较。然而,有必要进行纵向研究,以探究时间对所得结果的影响。
原文链接:https://journals.lww.com/nrronline/fulltext/2025/05000/resting_state_brain_network_remodeling_after.31.aspx
参考文献
[1] Shen J. Plasticity of the central nervous system involving peripheral nerve transfer. Neural Plast. 2022;2022:5345269.
[2] Taylor KS, Anastakis DJ, Davis KD. Cutting your nerve changes your brain. Brain. 2009;132:3122-3133.
[3] Bao BB, Zhu HY, Wei HF, et al. Altered intra- and inter-network brain functional connectivity in upper-limb amputees revealed through independent component analysis. Neural Regen Res. 2022;17:2725-2729.
[4] Bhat DI, Indira Devi B, Bharti K, et al. Cortical plasticity after brachial plexus injury and repair: a resting-state functional MRI study. Neurosurg Focus. 2017;42:E14.
[5] Xing XX, Hua XY, Zheng MX, et al. Intra and inter: Alterations in functional brain resting-state networks after peripheral nerve injury. Brain Behav. 2020;10:e01747.
[6] Li H, Chen J, Wang J, et al. Review of rehabilitation protocols for brachial plexus injury. Front Neurol. 2023;14:1084223.
[7] Luo W, Yan Z, Guo Y, et al. Contralateral seventh cervical nerve transfer for central spastic arm paralysis: a systematic review and meta-analysis. Front Neurol. 2023;14:1113254.
[8] Zheng MX, Shen YD, Hua XY, et al. Cortical reorganization in dual innervation by single peripheral nerve. Neurosurgery. 2018;83:819-826.
[9] Li C, Liu SY, Pi W, et al. Cortical plasticity and nerve regeneration after peripheral nerve injury. Neural Regen Res. 2021;16:1518-1523.
[10] Zuo CT, Hua XY, Guan YH, et al. Long-range plasticity between intact hemispheres after contralateral cervical nerve transfer in humans. J Neurosurg. 2010;113:133-140.
[11] Gehr C, Sibille J, Kremkow J. Retinal input integration in excitatory and inhibitory neurons in the mouse superior colliculus in vivo. Elife. 2023;12:RP88289.
[12] Levakov G, Ganor S, Avidan G. Reliability and validity of brain-gastric phase synchronization. Hum Brain Mapp. 2023;44:4956-4966.
[13] Lathe R, Singadia S, Jordan C, et al. The interoceptive hippocampus: Mouse brain endocrine receptor expression highlights a dentate gyrus (DG)-cornu ammonis (CA) challenge-sufficiency axis. PLoS One. 2020;15:e0227575.
[14] Ruiz-Rizzo AL, Beissner F, Finke K, et al. Human subsystems of medial temporal lobes extend locally to amygdala nuclei and globally to an allostatic-interoceptive system. Neuroimage. 2020;207:116404.