中国神经再生研究(英文版) ›› 2018, Vol. 13 ›› Issue (3): 456-462.doi: 10.4103/1673-5374.228728

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

蛛网膜下腔出血后的大脑微循环:小鼠体内实验

  

  • 收稿日期:2017-11-30 出版日期:2018-03-15 发布日期:2018-03-15
  • 基金资助:

    中国国家自然科学基金项目(81100856)

In vivo observation of cerebral microcirculation after experimental subarachnoid hemorrhage in mice

Xiao-mei Yang1, Xu-hao Chen2, Jian-fei Lu1, Chang-man Zhou1, Jing-yan Han3, Chun-hua Chen1   

  1. 1 Department of Human Anatomy and Embryology, Peking University Health Science Center, Beijing, China
    2 School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
    3 Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
  • Received:2017-11-30 Online:2018-03-15 Published:2018-03-15
  • Contact: Chun-hua Chen, M.D., Ph.D. or Jing-yan Han, cch@bjmu.edu.cn.
  • Supported by:

    This study was supported by the National Natural Science Foundation of China, No. 81100856

摘要:

蛛网膜下腔出血导致的早期脑损伤是其预后不良的主要原因。为探索其病理机制,需要了解其病理条件下大脑微循环形态学的变化;但既往研究多集中于迟发性脑损伤,而对早期脑损伤的研究则主要集中在离体组织中。因此实验拟利用活体显像观察蛛网膜下腔出血后脑微循环的动态变化。在雄性成年C57/BL6小鼠大脑中动脉和大脑前动脉分叉处穿孔建立蛛网膜下腔出血模型,在蛛网膜下腔出血180min内利用活体荧光显微镜观察软脑膜小动脉和小静脉以及白细胞黏附/白蛋白外渗情况的变化,同时使用激光多普勒灌注成像系统检测脑血流量变化。见蛛网膜下腔出血后出现异常软脑膜微循环,且脑血流量降低;急性血管收缩主要发生在动脉而不是静脉;小静脉内白细胞粘附和白蛋白外渗逐渐增加,从蛛网膜下腔出血10min开始至180min止。该项实验结果明确了蛛网膜下腔出血早期微循环的变化,对早期干预蛛网膜下腔出血,保护了神经系统功能提供新的研究方向。

orcid:0000-0002-8502-8189(Chun-hua Chen)

 

关键词: 神经再生, 蛛网膜下腔出血, 微循环障碍, 白细胞粘附, 白蛋白外渗, 脑血流量, 血管收缩, 早期脑损伤

Abstract:

Acute brain injury caused by subarachnoid hemorrhage is the major cause of poor prognosis. The pathology of subarachnoid hemorrhage likely involves major morphological changes in the microcirculation. However, previous studies primarily used fixed tissue or delayed injury models. Therefore, in the present study, we used in vivo imaging to observe the dynamic changes in cerebral microcirculation after subarachnoid hemorrhage. Subarachnoid hemorrhage was induced by perforation of the bifurcation of the middle cerebral and anterior cerebral arteries in male C57/BL6 mice. The diameter of pial arterioles and venules was measured by in vivo fluorescence microscopy at different time points within 180 minutes after subarachnoid hemorrhage. Cerebral blood flow was examined and leukocyte adhesion/albumin extravasation was determined at different time points before and after subarachnoid hemorrhage. Cerebral pial microcirculation was abnormal and cerebral blood flow was reduced after subarachnoid hemorrhage. Acute vasoconstriction occurred predominantly in the arterioles instead of the venules. A progressive increase in the number of adherent leukocytes in venules and substantial albumin extravasation were observed between 10 and 180 minutes after subarachnoid hemorrhage. These results show that major changes in microcirculation occur in the early stage of subarachnoid hemorrhage. Our findings may promote the development of novel therapeutic strategies for the early treatment of subarachnoid hemorrhage.

Key words: nerve regeneration, subarachnoid hemorrhage, microcirculation disturbance, leukocyte adhesion, albumin extravasation, cerebral blood flow, vasoconstriction, early brain injury, neural regeneration