中国神经再生研究(英文版) ›› 2025, Vol. 20 ›› Issue (9): 2538-2555.doi: 10.4103/NRR.NRR-D-24-00303

• 综述:退行性病与再生 • 上一篇    下一篇

米载体介导的siRNA递送:为脑创伤相关的阿尔茨海默病治疗带来新曙光

  

  • 出版日期:2025-09-15 发布日期:2024-12-28

Nanocarrier-mediated siRNA delivery: a new approach for the treatment of traumatic brain injury–related Alzheimer’s disease

Jie Jin1, #, Huajing Zhang1, 2, #, Qianying Lu1, 2, #, Linqiang Tian3, 4, Sanqiao Yao5, 6, Feng Lai3 , Yangfan Liang1 , Chuanchuan Liu1 , Yujia Lu1 , Sijia Tian1 , Yanmei Zhao1, 2, *, Wenjie Ren3, 4, 5, *   

  1. 1 Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China;  2 Key Laboratory for Disaster Medicine Technology, Tianjin, China;  3 Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China;  4 Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province, China;  5 Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province, China;  6 School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
  • Online:2025-09-15 Published:2024-12-28
  • Contact: Yanmei Zhao, PhD, zhaoyanmei@tju.edu.cn; Wenjie Ren, PhD, xxmu_rwj@163.com.
  • Supported by:
    This work was supported by Open Project of the Key Laboratory of Trauma and Orthopedics Research Medicine in Henan Province, No. HZKFKT20220504 (to YZ); the National Natural Science Foundation of China, No. 32000877 (to YZ); and Open Scientific Research Program of Military Logistics, No. BLB20J009 (to YZ).

摘要:

创伤性脑损伤和阿尔茨海默病在病理上有相似之处,包括神经元缺失、淀粉样蛋白β沉积、tau过度磷酸化、血脑屏障功能障碍、神经炎症和认知障碍。创伤性脑损伤可能会加剧类似于阿尔茨海默病的病理变化,从而有可能导致阿尔茨海默病的发展。纳米载体提供了一种潜在的解决方案,它能促进小干扰RNA (siRNA)穿过血脑屏障,有针对性地沉默与创伤性脑损伤和注意力缺失症有关的关键病理基因,与传统的神经再生方法不同,这种分子靶向策略可在分子水平上调节疾病起源,避免非特异性药物作用。文章重点评述了利用纳米载体系统实现siRNA高效精准递送的最新研究进展,分析了纳米载体的优势、面临的挑战及未来发展方向。原则上,siRNA可以靶向所有基因和无法靶向的蛋白,为各种疾病的治疗带来巨大希望。在目前针对神经系统疾病的许多治疗方法中,siRNA基因沉默疗法可以在基因水平上精确"关闭"任何基因的表达,从而从根本上抑制疾病的进展。然而,将siRNA靶向大脑的最大困难在于如何穿过血脑屏障。纳米颗粒作为一种创新的药物传递工具,在治疗脑部疾病方面受到广泛关注,它们具有突破血脑屏障、靶向给药、增强药物稳定性和多功能治疗等优势,被视为潜在的治疗策略。利用纳米颗粒携带特定改性的siRNA进入损伤的大脑进行治疗,逐渐被认为是一种可行和有效的方法。虽然目前这一策略尚处于临床前探索阶段,期待未来能实现临床转化,将为创伤性脑损伤相关的阿尔茨海默病带来全新的分子靶向治疗与精准医疗的新领域。

https://orcid.org/0000-0002-8572-6470 (Yanmei Zhao); https://orcid.org/0000-0003-4711-2352 (Wenjie Ren)

关键词: 基因沉默,  血脑屏障,  神经炎症,  脂质体纳米颗粒,  聚合物纳米颗粒,  外泌体,  干细胞,  无机纳米材料,  认知功能障碍,  免疫疗法

Abstract: Traumatic brain injury and Alzheimer’s disease share pathological similarities, including neuronal loss, amyloid-β deposition, tau hyperphosphorylation, blood–brain barrier dysfunction, neuroinflammation, and cognitive deficits. Furthermore, traumatic brain injury can exacerbate Alzheimer’s disease-like pathologies, potentially leading to the development of Alzheimer’s disease. Nanocarriers offer a potential solution by facilitating the delivery of small interfering RNAs across the blood–brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer’s disease. Unlike traditional approaches to neuroregeneration, this is a molecular-targeted strategy, thus avoiding non-specific drug actions. This review focuses on the use of nanocarrier systems for the efficient and precise delivery of siRNAs, discussing the advantages, challenges, and future directions. In principle, siRNAs have the potential to target all genes and non-targetable proteins, holding significant promise for treating various diseases. Among the various therapeutic approaches currently available for neurological diseases, siRNA gene silencing can precisely “turn off” the expression of any gene at the genetic level, thus radically inhibiting disease progression; however, a significant challenge lies in delivering siRNAs across the blood–brain barrier. Nanoparticles have received increasing attention as an innovative drug delivery tool for the treatment of brain diseases. They are considered a potential therapeutic strategy with the advantages of being able to cross the blood–brain barrier, targeted drug delivery, enhanced drug stability, and multifunctional therapy. The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach. Although this strategy is still in the preclinical exploration stage, it is expected to achieve clinical translation in the future, creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer’s disease associated with traumatic brain injury.

Key words: blood–brain barrier,  cognitive dysfunction,  exosomes,  gene silencing,   immunotherapy,  inorganic nanomaterials,  liposome nanoparticles,   neuroinflammation,   polymer nanoparticles,  stem cells