中国神经再生研究(英文版) ›› 2021, Vol. 16 ›› Issue (12): 2425-2426.doi: 10.4103/1673-5374.313040

• 观点:退行性病与再生 • 上一篇    下一篇

金纳米颗粒在神经退行性疾病治疗中的应用进展:新观点

  

  • 出版日期:2021-12-15 发布日期:2021-05-14

Advance in the use of gold nanoparticles in the treatment of neurodegenerative diseases: new perspectives

Gustavo de Bem Silveira, Alexandre Pastoris Muller, Ricardo Andrez Machado-de-Ávila, Paulo Cesar Lock Silveira*   

  1. Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil (Silveira GB, Muller AP, Machado-de-Ávila RA, Silveira PCL) ;Programa de Pós Graduação em Farmacologia, UFSC, Florianópolis, SC, Brazil (Muller AP) 
  • Online:2021-12-15 Published:2021-05-14
  • Contact: Paulo Cesar Lock Silveira, psilveira@unesc.net.
  • Supported by:
    The present work was supported by CAPES-001 (to PCLS). 

摘要:

Neural Regen Res:金纳米颗粒治疗神经退行性疾病:一种创新疗法

   无机纳米颗粒,其结构表现出显著的新颖和独特的物理、化学和生物特性,由于其生物和医药潜力引起了人们的极大兴趣。金纳米颗粒由于其生物相容性和易于与生物分子结合而在生物医学应用中得到了广泛的研究。然而,在大脑中使用金纳米颗粒本身对神经退行性疾病的影响尚不清楚。有趣的是,金纳米颗粒具有抗炎和抗氧化的特性,有可能用于治疗神经退行性疾病。金纳米颗粒也是活性氧的有效清除剂,包括过氧化氢(H2O2)和超氧阴离子(O2-),有助于抗氧化酶的活性。最新研究表明金纳米颗粒具有药物释放的治疗潜力及其潜在作用。金纳米颗粒的有益作用为更好地理解神经退行性疾病过程的新分析提供了支持。在阿尔茨海默病模型中使用GSH还原的金纳米颗粒,其中观察到大小为3-4nm的金纳米颗粒显示出神经元对淀粉样β42聚集诱导的细胞毒性的最佳抑制效率和保护作用。由于与金纳米颗粒相互作用的表面积增加,即使一部分丢失,也有更多的金纳米颗粒可以穿过血脑屏障。

    来自巴西圣卡塔琳娜州南方大学的Paulo Cesar Lock Silveira认为为了将金纳米颗粒的作用与有效的药物传递联系起来,必须进行新的分析和测试。由于金纳米颗粒与药理药物具有高度的相容性和相互作用性,抗炎药或其他特异性药物在神经退行性疾病治疗中的应用日益突出。左旋多巴与金纳米颗粒联用,除了能在不损失药效的前提下延长作用时间外,还能减少药物的有害作用,增加药物的有益作用。利斯的是一种用于治疗阿尔茨海默病的药物,也是乙酰胆碱酯酶的抑制剂,应用广泛,但半衰期较低:这是与金纳米颗粒一起使用的一个可能的缺口,它可以作为一种良好的载体改善药物释放,促进乙酰胆碱酯酶的代谢,从而可能增加利斯的的作用时间。金纳米颗粒的这些可能的用途是有效的和非常有前途的,扩大了纳米颗粒作为一种创新疗法在生物医学领域的应用范围。  

    文章在《中国神经再生研究(英文版)》杂志2021年 12 12  期发表。

    https://orcid.org/0000-0003-4908-2257(Paulo Cesar Lock Silveira)

Abstract: Various conditions affecting nerve cells and the nervous system due to the loss of neurons and their connecting networks are described under the superordinate phrase “Neurodegenerative diseases”. Such diseases lead to disability due to gradual neuronal death in both the central nervous system and the peripheral nervous system. While many of these diseases have unknown causes, sometimes these are due to medical conditions such as alcoholism, a tumor, or a stroke, or other causes which may include genetic mutations, toxins, chemicals, and viruses. Neurodegenerative diseases can be induced by various neurotoxic events, such as excessive inflammation, reactive oxygen species (ROS) production, and mitochondrial dysfunctions. The main symptoms associated with these disorders are related to movement (ataxia), mental functioning (dementia), or both, causing morbidity and death, thus having social and economic implications. The available treatments for these disorders provide only symptomatic relief, such as extending the lifespan to a few years. Still, a lot of research is in progress to find therapeutic markers for such diseases, as the complexity of the pathophysiology of neurodegenerative diseases and the underlying cell interactions is often imperfectly understood, limiting the development of therapeutic approaches (Khan et al., 2020). These physical constraints and the lack of specificity of current pharmacological approaches explain why most drugs and neurosurgical procedures have not been effective in the treatment of central nervous system disorders. As examples, pharmaceutical drugs used as treatment for Alzheimer’s disease have low effects and those for Parkinson’s disease loses their activity in a few years.