Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (1): 83-89.doi: 10.3969/j.issn.1673-5374.2013.01.011
Previous Articles Next Articles
Shuqin Zhan1, 2, An Zhou2, Chelsea Piper2, Tao Yang2
Received:
2012-08-17
Revised:
2012-12-03
Online:
2013-01-05
Published:
2013-01-05
Contact:
Shuqin Zhan, Department of Neurology, the Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China; Robert S. Dow Neurobiology Laboratories, Legacy Clinic Research and Technology Center, Portland, OR 97232, USA, zhanshuqin@163.com.
About author:
Shuqin Zhan☆, M.D., Ph.D., Associate chief physician.
Supported by:
The project was financially supported by the National Natural Science Foundation of China, No. 81070999; the foundation of Xi’an Jiaotong University, No. 95, 2009; Foundation of the Second Affiliated Hospital of Xi’an Jiaotong University, No. RC (GG) 201109; the
Shuqin Zhan, An Zhou, Chelsea Piper, Tao Yang. Dynamic changes in proprotein convertase 2 activity in cortical neurons after ischemia/reperfusion and oxygen-glucose deprivation[J]. Neural Regeneration Research, 2013, 8(1): 83-89.
1. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54(1):34-66. http://www.sciencedirect.com/science/article/pii/S01650173060011722. Hayashi T, Abe K. Ischemic neuronal cell death and organellae damage. Neurol Res. 2004;26(8):827-834.http://www.jci.org/articles/view/169933.Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391-397.http://www.sciencedirect.com/science/journal/016622364.Nedergaard M, Kraig RP, Tanabe J, et al. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol. 1991;260(3 Pt 2):R581-588.http://ajpregu.physiology.org/content/260/3/R581.reprint5. Paschen W, Doutheil J. Disturbances of the functioning of endoplasmic reticulum: a key mechanism underlying neuronal cell injury? J Cereb Blood Flow Metab. 1999;19(1):1-18.http://www.nature.com/jcbfm/journal/v19/n1/full/9590492a.html6. Zhou A, Webb G, Zhu X, et al. Proteolytic processing in the secretory pathway. J Biol Chem. 1999;274(30):20745-20748.http://www.jbc.org/content/274/30/20745.long7. Friedman TC, Loh YP, Birch NP. In vitro processing of proopiomelanocortin by recombinant PC1 (SPC3). Endocrinology. 1994;135(3):854-862.http://endo.endojournals.org/content/135/3/854.long8. Friedman TC, Loh YP, Cawley NX, et al. Processing of prothyrotropin-releasing hormone (Pro-TRH) by bovine intermediate lobe secretory vesicle membrane PC1 and PC2 enzymes. Endocrinology. 1995;136(10):4462-4472.http://endo.endojournals.org/content/136/10/4462.long9. Bloomquist BT, Eipper BA, Mains RE. Prohormone-converting enzymes: regulation and evaluation of function using antisense RNA. Mol Endocrinol. 1991;5(12):2014-2024.http://mend.endojournals.org/content/5/12/2014.long10. Galanopoulou AS, Kent G, Rabbani SN, et al. Heterologous processing of prosomatostatin in constitutive and regulated secretory pathways. Putative role of the endoproteases furin, PC1, and PC2. J Biol Chem. 1993;268(8):6041-6049.http://www.jbc.org/content/268/8/6041.long11. Perone MJ, Ahmed I, Linton EA, et al. Procorticotrophin releasing hormone is endoproteolytically processed by the prohormone convertase PC2 but not by PC1 within stably transfected CHO-K1 cells. Biochem Soc Trans. 1996;24(3):497S.http://www.biochemsoctrans.org/bst/default.htm12. Johanning K, Mathis JP, Lindberg I. Role of PC2 in proenkephalin processing: antisense and overexpression studies. J Neurochem. 1996;66(3):898-907.http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.1996.66030898.x/abstract13.Zhan S, Zhao H, J White A, et al. Defective neuropeptide processing and ischemic brain injury: a study on proprotein convertase 2 and its substrate neuropeptide in ischemic brains. J Cereb Blood Flow Metab. 2009;29(4):698-706. http://www.nature.com/jcbfm/journal/v29/n4/full/jcbfm2008161a.html14. Ni XP, Pearce D, Butler AA, et al. Genetic disruption of gamma-melanocyte-stimulating hormone signaling leads to salt-sensitive hypertension in the mouse. J Clin Invest. 2003;111(8):1251-1258.http://www.jci.org/articles/view/1699315. Yan SF, Fujita T, Lu J, et al. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med. 2000;6(12):1355-1361.http://www.nature.com/doifinder/10.1038/8216816. Rouillé Y, Duguay SJ, Lund K, et al. Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Front Neuroendocrinol. 1995;16(4):322-361.http://www.sciencedirect.com/science/article/pii/S009130228571012617. Seidah NG, Chrétien M. Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr Opin Biotechnol. 1997;8(5):602-607.http://www.sciencedirect.com/science/article/pii/S095816699780036518. Muller L, Lindberg I. The cell biology of the prohormone convertases PC1 and PC2. Prog Nucleic Acid Res Mol Biol. 1999;63:69-108.http://www.ncbi.nlm.nih.gov/pubmed/1050682919. Seidah NG, Gaspar L, Mion P, et al. cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol. 1990;9(6):415-424.http://www.ncbi.nlm.nih.gov/pubmed/216976020. Seidah NG, Marcinkiewicz M, Benjannet S, et al. Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. Mol Endocrinol. 1991;5(1):111-122.http://mend.endojournals.org/content/5/1/111.long21. Seidah NG. What lies ahead for the proprotein convertases? Ann N Y Acad Sci. 2011;1220:149-161. http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.2010.05883.x/abstract;jsessionid=EFAB84F3384C08126F7AA03473C695CE.d03t0322. Li QL, Naqvi S, Shen X, et al. Prohormone convertase 2 enzymatic activity and its regulation in neuro-endocrine cells and tissues. Regul Pept. 2003;110(3):197-205.http://www.sciencedirect.com/science/article/pii/S016701150200207023. Seidah NG. The proprotein convertases, 20 years later. Methods Mol Biol. 2011;768:23-57.http://www.springerlink.com/content/g893735t6225445j/#section=933726&page=124. Croissandeau G, Wahnon F, Yashpal K, et al. Increased stress-induced analgesia in mice lacking the proneuropeptide convertase PC2. Neurosci Lett. 2006;406(1-2):71-75. http://www.sciencedirect.com/science/article/pii/S030439400600677X25. Mbikay M, Seidah NG, Chrétien M. Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem J. 2001;357(Pt 2):329-342.http://www.biochemj.org/bj/357/0329/bj3570329.htm26. Lamango NS, Zhu X, Lindberg I. Purification and enzymatic characterization of recombinant prohormone convertase 2: stabilization of activity by 21 kDa 7B2. Arch Biochem Biophys. 1996;330(2):238-250.http://www.sciencedirect.com/science/article/pii/S000398619690249027. Shen FS, Seidah NG, Lindberg I. Biosynthesis of the prohormone convertase PC2 in Chinese hamster ovary cells and in rat insulinoma cells. J Biol Chem. 1993;268(33):24910-24915.http://www.jbc.org/content/268/33/24910.long28. Mbikay M, Seidah NG, Chrétien M. Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem J. 2001;357(Pt 2):329-342.http://www.biochemj.org/bj/357/0329/bj3570329.htm29. Fortenberry Y, Liu J, Lindberg I. The role of the 7B2 CT peptide in the inhibition of prohormone convertase 2 in endocrine cell lines. J Neurochem. 1999;73(3):994-1003.http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.1999.0730994.x/abstract30. Furuta M, Yano H, Zhou A, et al. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc Natl Acad Sci U S A. 1997;94(13):6646-6651.http://www.pnas.org/content/94/13/6646.long31. Zhang X, Pan H, Peng B, et al. Neuropeptidomic analysis establishes a major role for prohormone convertase-2 in neuropeptide biosynthesis. J Neurochem. 2010;112(5):1168-1179. http://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.2009.06530.x/abstract;jsessionid=B8A27310C1B9A3437EF4A3D16DFE4570.d03t0132. Zhou A, Minami M, Zhu X, et al. Altered biosynthesis of neuropeptide processing enzyme carboxypeptidase E after brain ischemia: molecular mechanism and implication. J Cereb Blood Flow Metab. 2004;24(6):612-622.http://www.nature.com/jcbfm/journal/v24/n6/full/9591563a.html33. Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84-91.http://stroke.ahajournals.org/content/20/1/84.long34. Shimizu S, Nagayama T, Jin KL, et al. bcl-2 Antisense treatment prevents induction of tolerance to focal ischemia in the rat brain. J Cereb Blood Flow Metab. 2001;21(3):233-243.http://www.nature.com/jcbfm/journal/v21/n3/full/9591059a.html35. Memezawa H, Minamisawa H, Smith ML, et al. Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res. 1992;89(1):67-78.http://www.ncbi.nlm.nih.gov/pubmed/160110336. Shimizu S, Simon RP, Graham SH. Dimethylsulfoxide (DMSO) treatment reduces infarction volume after permanent focal cerebral ischemia in rats. Neurosci Lett. 1997;239(2-3):125-127.http://www.sciencedirect.com/science/article/pii/S030439409700915437. Xiong H, Yamada K, Han D, et al. Mutual regulation between the intercellular messengers nitric oxide and brain-derived neurotrophic factor in rodent neocortical neurons. Eur J Neurosci. 1999;11(5):1567-1576.http://onlinelibrary.wiley.com/doi/10.1046/j.1460-9568.1999.00567.x/abstract;jsessionid=8AC51B6C8235ABFB61C44182293DEF80.d03t0338. Jin K, Graham SH, Nagayama T, et al. Altered expression of the neuropeptide-processing enzyme carboxypeptidase E in the rat brain after global ischemia. J Cereb Blood Flow Metab. 2001;21(12):1422-1429.http://www.nature.com/jcbfm/journal/v21/n12/full/9591174a.html#READ%20ME%20FIRST39. Berman Y, Mzhavia N, Polonskaia A, et al. Defective prodynorphin processing in mice lacking prohormone convertase PC2. J Neurochem. 2000;75(4):1763-1770.http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.2000.0751763.x/abstract;jsessionid=DE9BF0545B75C94CB7051DBCA2D43455.d04t0140. Zhu X, Rouille Y, Lamango NS, et al. Internal cleavage of the inhibitory 7B2 carboxyl-terminal peptide by PC2: a potential mechanism for its inactivation. Proc Natl Acad Sci U S A. 1996;93(10):4919-4924.http://www.pnas.org/content/93/10/4919.long |
[1] | Liu-Lin Xiong, Jie Chen, Ruo-Lan Du, Jia Liu, Yan-Jun Chen, Mohammed Al Hawwas, Xin-Fu Zhou, Ting-Hua Wang, Si-Jin Yang, Xue Bai. Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage [J]. Neural Regeneration Research, 2021, 16(8): 1453-1459. |
[2] | Wan-Chao Yang, Hong-Ling Cao, Yue-Zhen Wang, Ting-Ting Li, Hong-Yu Hu, Qiang Wan, Wen-Zhi Li. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(8): 1574-1581. |
[3] | Shu Wang, Miao Gu, Cheng-Cheng Luan, Yu Wang, Xiaosong Gu, Jiang-Hong He. Biocompatibility and biosafety of butterfly wings for the clinical use of tissue-engineered nerve grafts [J]. Neural Regeneration Research, 2021, 16(8): 1606-1612. |
[4] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[5] | Meng-Shi Yang, Xiao-Jian Xu, Bin Zhang, Fei Niu, Bai-Yun Liu. Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(7): 1235-1243. |
[6] | Ayaka Sugeno, Wenhui Piao, Miki Yamazaki, Kiyofumi Takahashi, Koji Arikawa, Hiroko Matsunaga, Masahito Hosokawa, Daisuke Tominaga, Yoshio Goshima, Haruko Takeyama, Toshio Ohshima. Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice [J]. Neural Regeneration Research, 2021, 16(7): 1258-1265. |
[7] | Allison S. Liang, Joanna E. Pagano, Christopher A. Chrzan, Randall D. McKinnon. Suicide transport blockade of motor neuron survival generates a focal graded injury and functional deficit [J]. Neural Regeneration Research, 2021, 16(7): 1281-1287. |
[8] | Yi-An Zhan, Xin-Liang Qiu, Xu-Zhen Wang, Ning Zhao, Ke-Jian Qian. Reducing LncRNA-5657 expression inhibits the brain inflammatory reaction in septic rats [J]. Neural Regeneration Research, 2021, 16(7): 1288-1293. |
[9] | Shinichi Kinoshita, Ryuta Koyama. Pro- and anti-epileptic roles of microglia [J]. Neural Regeneration Research, 2021, 16(7): 1369-1371. |
[10] | Martin A. Schick, Malgorzata Burek, Carola Y. Förster, Michiaki Nagai, Christian Wunder, Winfried Neuhaus. Hydroxyethylstarch revisited for acute brain injury treatment [J]. Neural Regeneration Research, 2021, 16(7): 1372-1376. |
[11] | Shi-Jia Yu, Ming-Jun Yu, Zhong-Qi Bu, Ping-Ping He, Juan Feng. MicroRNA-670 aggravates cerebral ischemia/reperfusion injury via the Yap pathway [J]. Neural Regeneration Research, 2021, 16(6): 1024-1030. |
[12] | Zi-Qi Shao, Shan-Shan Dou, Jun-Ge Zhu, Hui-Qing Wang, Chun-Mei Wang, Bao-Hua Cheng, Bo Bai. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regeneration Research, 2021, 16(6): 1044-1051. |
[13] | Qiu-Shi Gao, Ya-Han Zhang, Hang Xue, Zi-Yi Wu, Chang Li, Ping Zhao . Brief inhalation of sevoflurane can reduce glial scar formation after hypoxic-ischemic brain injury in neonatal rats [J]. Neural Regeneration Research, 2021, 16(6): 1052-1061. |
[14] | Jian Zhang, Ren-Jie Wang, Miao Chen, Xiao-Yin Liu, Ke Ma, Hui-You Xu, Wu-Sheng Deng, Yi-Chao Ye, Wei-Xin Li, Xu-Yi Chen, Hong-Tao Sun. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(6): 1068-1077. |
[15] | Muyue Yang, Zhen Yang, Pu Wang, Zhihui Sun. Current application and future directions of photobiomodulation in central nervous diseases [J]. Neural Regeneration Research, 2021, 16(6): 1177-1185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||