Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (5): 397-403.doi: 10.3969/j.issn.1673-5374.2013.05.002
Previous Articles Next Articles
Liqing Yao1, Chuan He1, Ying Zhao1, Jirong Wang1, Mei Tang1, Jun Li1, Ying Wu1, Lijuan Ao1, Xiang Hu2
Received:
2012-11-12
Revised:
2013-01-08
Online:
2013-02-15
Published:
2013-02-15
Contact:
Lijuan Ao, Professor, Department of Rehabilitation, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China, kyfeykfk@ yahoo.com.cn
About author:
Liqing Yao☆, M.D., Associate professor.
Liqing Yao, Chuan He, Ying Zhao, Jirong Wang, Mei Tang, Jun Li, Ying Wu, Lijuan Ao, Xiang Hu. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury[J]. Neural Regeneration Research, 2013, 8(5): 397-403.
[1] Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44(9):523-529. [2] Kwon BK, Stammers AM, Belanger LM, et al. Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma. 2010;27(4):669-682. [3] Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75(1):15-26. [4] Dusart I, Schwab ME. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci. 1994;6(5):712-724. [5] Bracken MB, Holford TR. Neurological and functional status 1 year after acute spinal cord injury: estimates of functional recovery in National Acute Spinal Cord Injury Study II from results modeled in National Acute Spinal Cord Injury Study III. J Neurosurg. 2002;96(3 Suppl): 259-266.[6] Kobylka P, Ivanyi P, Breur-Vriesendorp BS. Preservation of immunological and colony- forming capacities of long-term (15 years) cryopreserved cordblood cells. Transplantation. 1998;65(9):1275-1278. [7] Liu CH, Hwang SM. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine. 2005; 32(6):270-279. [8] Newman MB, Willing AE, Manresa JJ, et al. Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp Neurol. 2006; 199(1):201-208.[9] Neuhoff S, Moers J, Rieks M, et al. Proliferation, differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro. Exp Hematol. 2007;35(7):1119-1131. [10] Chua SJ, Bielecki R, Wong CJ, et al. Neural progenitors, neurons and oligodendrocytes from human umbilical cord blood cells in a serum-free, feeder free cell culture. Biochem Biophys Res Commun. 2009;379(2):217-221. [11] Chen N, Hudson JE, Walczak P, et al. Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells. 2005; 23(10):1560-1570. [12] Lee MW, Moon YJ, Yang MS, et al. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun. 2007;358(2):637-643. [13] Ortiz-Gonzalez XR, Keene CD, Verfaillie CM, et al. Neural induction of adult bone marrow and umbilical cord stem cells. Curr Neurovasc Res. 2004;1(3):207-213. [14] Li JY, Christophersen NS, Hall V, et al. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci. 2008;31(3):146-153. [15] Sykova’E, Jendelova’P, Urdz?’kova’L, et al. Bone marrow stem cells and polymer hydrogels–two strategies for spinal cord injury repair. Cell Mol Neurobiol. 2006;(7-8): 1113-1129. [16] Park HC, Shim YS, Ha Y, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte- macrophage colony stimulating factor. Tissue Eng. 2005;11(5-6):913-922. [17] Tator CH. Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery. 2006;59(5):957-982. [18] Stokic DS, Curt A. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord. 2010;48(8):649.[19] McDonald JW, Belegu V. Demyelination and remyelination after spinal cord injury. Neurotrauma. 2006;23(3-4): 345-359. [20] McDonald JW. Repairing the damaged spinal cord: from stem cells to activity-based restoration therapies. Clin Neurosurg. 2004;51:207-227. [21] Becker D, Sadowsky CL, McDonald JW. Restoring function after spinal cord injury. Neurologist. 2003; 9(1):1-15. [22] Chua SJ, Bielecki R, Wong CJ, et al. Neural progenitors, neurons and oligodendrocytes from human umbilical cord blood cells in a serum-free, feederfree cell culture. Biochem Biophys Res Commun. 2009;379(2):217-221.[23] Chua SJ , Bielecki R, Yamanaka N, et al. The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine. 2010;35(16):1520-1526. [24] Veeravalli KK, Dasari VR, Tsung AJ, et al. Human umbilical cord blood stem cells upregulate matrix metalloproteinase-2 in rats after spinal cord injury. Neurobiol Dis. 2009;36(1):200-212. [25] Sykova’E, Jendelova’P, Urdz?’kova’L, et al. Bone marrow stem cells and polymer hydrogels–two strategies for spinal cord injury repair. Cell Mol Neurobiol. 2006;26(7-8): 1113-1129. [26] Park HC, Shim YS, Ha Y, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte- macrophage colony stimulating factor. Tissue Eng. 2005;11(5-6):913-922. [27] Burns AS, Lee BS, Ditunno Jr JF, et al. Patient selection for clinical trials: the reliability of the early spinal cord injury examination. J Neurotrauma. 2003;20(5):477-482. [28] Marino RJ, Barros T, Biering-Sorensen F, et al. International standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2003;26(Suppl 1): S50-56. [29] Ogawa Y, Sawamoto K, Miyata T, et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res. 2002;69(6): 925-933.[30] Sasaki M, Honmou O, Akiyama Y, et al. Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia. 2001;35(1): 26-34. [31] Liu S, Qu Y, Stewart TJ, et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci U S A. 2000;97(11):6126-6131. [32] Burns AS, Ditunno JF. Establishing prognosis and maximizing functional outcomes after spinal cord injury: a review of current and future directions in rehabilitation management. Spine. 2001;26(24 Suppl):S137-145. [33] State Council of the People’s Republic of China. Administrative Regulations on Medical Institution. 1994-09-01.[34] Yang WZ, Zhang Y, Wu F, et al. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J Transl Med. 2010;(8):75-80. [35] Kirshblum SC, Memmo P, Kim N, et al. Comparision of the revised 2000 American Spinal Injury Association classification standards with the 1966 guidelines. Am J Phys Med Rehabili. 2002;81(7):502-505. |
[1] | Yu Li, Ping-Ping Shen, Bin Wang. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy [J]. Neural Regeneration Research, 2021, 16(8): 1500-1509. |
[2] | Wan-Chao Yang, Hong-Ling Cao, Yue-Zhen Wang, Ting-Ting Li, Hong-Yu Hu, Qiang Wan, Wen-Zhi Li. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(8): 1574-1581. |
[3] | Shu Wang, Miao Gu, Cheng-Cheng Luan, Yu Wang, Xiaosong Gu, Jiang-Hong He. Biocompatibility and biosafety of butterfly wings for the clinical use of tissue-engineered nerve grafts [J]. Neural Regeneration Research, 2021, 16(8): 1606-1612. |
[4] | Guo-Yu Wang, Zhi-Jian Cheng, Pu-Wei Yuan, Hao-Peng Li, Xi-Jing He. Olfactory ensheathing cell transplantation alters the expression of chondroitin sulfate proteoglycans and promotes axonal regeneration after spinal cord injury [J]. Neural Regeneration Research, 2021, 16(8): 1638-1644. |
[5] | Xue-Mei Zhang, Yang Sun, Ying-Lian Zhou, Zhuo-Min Jiao, Dan Yang, Yuan-Jiao Ouyang, Mei-Yu Yu, Jin-Yue Li, Wei Li, Duo Wang, Hui Yue, Jin Fu. Therapeutic effects of dental pulp stem cells on vascular dementia in rat models [J]. Neural Regeneration Research, 2021, 16(8): 1645-1651. |
[6] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[7] | Ayaka Sugeno, Wenhui Piao, Miki Yamazaki, Kiyofumi Takahashi, Koji Arikawa, Hiroko Matsunaga, Masahito Hosokawa, Daisuke Tominaga, Yoshio Goshima, Haruko Takeyama, Toshio Ohshima. Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice [J]. Neural Regeneration Research, 2021, 16(7): 1258-1265. |
[8] | Dulce Parra-Villamar, Liliana Blancas-Espinoza, Elisa Garcia-Vences, Juan Herrera-García, Adrian Flores-Romero, Alberto Toscano-Zapien, Jonathan Vilchis Villa, Rodríguez Barrera-Roxana, Soria Zavala Karla, Antonio Ibarra, Raúl Silva-García. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury [J]. Neural Regeneration Research, 2021, 16(7): 1273-1280. |
[9] | Li-Jian Zhang, Yao Chen, Lu-Xuan Wang, Xiao-Qing Zhuang He-Chun Xia. Identification of potential oxidative stress biomarkers for spinal cord injury in erythrocytes using mass spectrometry [J]. Neural Regeneration Research, 2021, 16(7): 1294-1301. |
[10] | Rong Li, Zu-Cheng Huang, Hong-Yan Cui, Zhi-Ping Huang, Jun-Hao Liu, Qing-An Zhu, Yong Hu. Utility of somatosensory and motor-evoked potentials in reflecting gross and fine motor functions after unilateral cervical spinal cord contusion injury [J]. Neural Regeneration Research, 2021, 16(7): 1323-1330. |
[11] | Zhong-Yue Lv, Ying Li, Jing Liu. Progress in clinical trials of stem cell therapy for cerebral palsy [J]. Neural Regeneration Research, 2021, 16(7): 1377-1382. |
[12] | Hui-Ling Wang, Fei-Lai Liu, Rui-Qing Li, Ming-Yue Wan, Jie-Ying Li, Jing Shi, Ming-Li Wu, Jun-Hua Chen, Wei-Juan Sun, Hong-Xia Feng, Wei Zhao, Jin Huang, Ren-Chao Liu, Wen-Xue Hao, Xiao-Dong Feng. Electroacupuncture improves learning and memory functions in a rat cerebral ischemia/reperfusion injury model through PI3K/Akt signaling pathway activation [J]. Neural Regeneration Research, 2021, 16(6): 1011-1016. |
[13] | Shi-Jia Yu, Ming-Jun Yu, Zhong-Qi Bu, Ping-Ping He, Juan Feng. MicroRNA-670 aggravates cerebral ischemia/reperfusion injury via the Yap pathway [J]. Neural Regeneration Research, 2021, 16(6): 1024-1030. |
[14] | Yuan Liu, Richard K. Lee. Cell transplantation to replace retinal ganglion cells faces challenges – the Switchboard Dilemma [J]. Neural Regeneration Research, 2021, 16(6): 1138-1141. |
[15] | Yansheng Liu, Jia-Xin Xie, Fang Niu, Zhexi Xu, Pengju Tan, Caihong Shen, Hongkun Gao, Song Liu, Zhengwen Ma, Kwok-Fai So, Wutian Wu, Chen Chen, Sujuan Gao, Xiao-Ming Xu, Hui Zhu. Surgical intervention combined with weight-bearing walking training improves neurological recoveries in 320 patients with clinically complete spinal cord injury: a prospective self-controlled study [J]. Neural Regeneration Research, 2021, 16(5): 820-829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||