中国神经再生研究(英文版) ›› 2013, Vol. 8 ›› Issue (4): 363-375.doi: 10.3969/j.issn.1673-5374.2013.04.009

• 综述:神经损伤修复保护与再生 • 上一篇    下一篇

线粒体氧化磷酸化的调控机制

  

  • 收稿日期:2012-12-12 修回日期:2013-01-20 出版日期:2013-02-05 发布日期:2013-02-05

Control mechanisms in mitochondrial oxidative phosphorylation

Jana Hroudová, Zdeněk Fišar   

  1. Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
  • Received:2012-12-12 Revised:2013-01-20 Online:2013-02-05 Published:2013-02-05
  • Contact: Zdeněk Fi?ar, Ph.D., Professor, Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 121 08 Prague 2, Czech Republic, zfisar@lf1.cuni.cz.
  • About author:Jana Hroudová☆, Ph.D

摘要:

线粒体是神经发生、突触发生、发育、突触可塑性和轴突再生的重要因子。线粒体内膜存在的氧化磷酸化是细胞功能所需的大量能量来源。ATP产物由多种机制调控,首先如氧,酶作物水平、ADP水平,线粒体膜电位,偶合率和质子漏。最近研究显示,这种调控机制正被替代,如TAC循环酶和电子传递链复形磷酸化可逆性,细胞色素C氧化酶和甲状腺粉变构抑制,脂肪酸和解偶联蛋白作用。
线粒体缺乏可以导致多种线粒体性肌病,如双相性精神障碍和精神分裂症。线粒体功能异常与其生成APT的能力有关。线粒体缺乏导致大量的活性氧释放,抗氧化能力减弱促进活性氧簇产物发生。本文将对线粒体氧化磷酸化和神经可塑性与活性氧产物的研究进行综述。

关键词: 神经再生, 线粒体, 代谢途径, 膜电位, 氧化磷酸化, 电子传递链复合物, 活性氧, 呼吸状态, 钙, 解偶联蛋白, 脂肪酸

Abstract:

Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.