中国神经再生研究(英文版) ›› 2014, Vol. 9 ›› Issue (11): 1138-1144.doi: 10.4103/1673-5374.135316

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

体感刺激可抑制大鼠海马CA1区锥体神经元的兴奋性

  

  • 收稿日期:2014-05-03 出版日期:2014-06-12 发布日期:2014-06-12

Somatosensory stimulation suppresses the excitability of pyramidal cells in the hippocampal CA1 region in rats

Yang Wang, Zhouyan Feng, Jing Wang, Xiaojing Zheng   

  1. Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang     University, Hangzhou, Zhejiang Province, China
  • Received:2014-05-03 Online:2014-06-12 Published:2014-06-12
  • Contact: Zhouyan Feng, Ph.D., Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou 310027, Zhejiang Province, China, fengzhouyan@139.com.

摘要:

大脑海马区对编码外界刺激及记忆形成至关重要,但其基本机制目前还不清楚。为研究海马CA1区锥体神经元和中间神经元响应体感输入的基本机制,我们利用微电极阵列记录和分析了大鼠接受尾夹体感刺激后,海马CA1区单个神经元局部场电位和放电频率的变化,并进一步探索不同类型神经元反应不同的原因,以确定体感输入对海马CA1区的影响以及其作用机制。结果表明,夹尾体感刺激后局部场电位呈现以theta频率为主的波形,且锥体细胞放电减少,中间神经元放电增加。此外,顺向诱发群峰电位出现衰减。提示体感刺激能抑制海马CA1区锥体细胞的兴奋性,而中间神经元抑制作用的增加可能是其潜在机制,且体感刺激的这种抑制性作用还可以为治疗神经组织的过度兴奋状态提供新思路。

关键词: 神经再生, 体感刺激, 夹尾, 海马CA1区, 局部场电位, 单元电位, 群峰电位, 兴奋性

Abstract:

The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of individual neurons in response to somatosensory inputs in the hippocampal CA1 region, we recorded and analyzed changes in local field potentials and the firing rates of individual pyramidal cells and interneurons during tail clamping in urethane-anesthetized rats. We also explored the mechanisms underlying the neuronal responses. Somatosensory stimulation, in the form of tail clamping, chan-ged local field potentials into theta rhythm-dominated waveforms, decreased the spike firing of pyramidal cells, and increased interneuron firing. In addition, somatosensory stimulation attenuated orthodromic-evoked population spikes. These results suggest that somatosensory stimulation suppresses the excitability of pyramidal cells in the hippocampal CA1 region. Increased inhibition by local interneurons might underlie this effect. These findings provide insight into the mechanisms of signal processing in the hippocampus and suggest that sensory stimulation might have therapeutic potential for brain disorders associated with neuronal hyperexcitability.

Key words: nerve regeneration, somatosensory stimulation, tail clamping, hippocampal CA1 region, local field potential, unit spike, population spike, excitability, 973 Program, neural regeneration