中国神经再生研究(英文版) ›› 2015, Vol. 10 ›› Issue (5): 804-807.doi: 10.4103/1673-5374.156986

• 原著:周围神经损伤修复保护与再生 • 上一篇    下一篇

自体神经移植修复不同缺损程度坐骨神经缺损:吻合口应力与位移的三维有限元模型分析

  

  • 收稿日期:2015-04-16 出版日期:2015-05-15 发布日期:2015-05-15
  • 基金资助:

    吉林省科技发展计划资助项目(20110492)

Autologous nerve graft repair of different degrees of sciatic nerve defect: stress and displacement at the anastomosis in a three-dimensional finite element simulation model

Cheng-dong Piao 1, Kun Yang 2, Peng Li 3, Min Luo 4   

  1. 1 Department of Orthopedics, Second Hospital, Jilin University, Changchun, Jilin Province, China
    2 Basic Department, Air Force Aviation University of Chinese PLA, Changchun, Jilin Province, China
    3 Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, Jilin Province, China
    4 Department of Pain, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
  • Received:2015-04-16 Online:2015-05-15 Published:2015-05-15
  • Contact: Min Luo, M.D., 2624500436@qq.com
  • Supported by:

    This study was supported by the Science and Technology Development Project of Jilin Province in China, No. 20110492.

摘要:

周围神经损伤后无论以自体神经还是以人工神经移植,移植后在生理应力作用下吻合口的张应力、张应变的大小都会影响吻接效果。以往以一维简单拉伸方法测量张应力、张应变的变化具有一定的局限性。鉴于此,我们建立了自体神经移植修复10,20,30,40mm长坐骨神经缺损的三维有限元模型。有限元软件PROE5.0计算得出在5N载荷作用下,以10,20,30,40mm长自体神经移植修复的缺损坐骨神经的最大应力和最大位移接近;且在相同载荷作用下移植物越长,最大位移越大,符合试样受力规律。说明以三维有限元法分析自体神经移植修复后吻合口的应力和位移是可行的。

关键词: 神经再生, 坐骨神经损伤, 自体神经移植, 外膜缝合法, 三维有限元模型, 载荷, 应力, 位移

Abstract:

In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the magnitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain; however, the accuracy of this simple method is limited. Therefore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anastomosis after autologous nerve grafting.

Key words: nerve regeneration, sciatic nerve injury, autologous nerve grafting, epineurial suturing, three-dimensional finite element models, load, stress, displacement, neural regeneration