中国神经再生研究(英文版) ›› 2016, Vol. 11 ›› Issue (9): 1365-1367.doi: 10.4103/1673-5374.191193

• 综述:神经损伤修复保护与再生 •    下一篇

轴突内蛋白质合成 - 神经修复的新目标?

  

  • 收稿日期:2016-06-10 出版日期:2016-09-30 发布日期:2016-09-30
  • 基金资助:

    与该篇总数有关的研究内容由美国国立卫生研究院(R01-NS041596和R01-NS089663到JLT; P01-NS055976到JDH),国家科学基金会(MCB- 1020970至JLT),国防部/国会授权研究计划(W81XWH-13-1-0308至JLT),美国 - 以色列二元科学基金会(2011329至JLT)和Miriam和Sheldon G. Adelson医学研究基金会 到JLT)资助。Twiss是南卡罗来纳大学儿童神经治疗学现任南卡罗来纳州SmartState主席

Intra-axonal protein synthesis – a new target for neural repair?

Jeffery L. Twiss1, *, Ashley L. Kalinski1, †, Rahul Sachdeva2, ‡, John D. Houle2   

  1. 1 Department of Biological Sciences, University of South Carolina, Columbia, SC, USA 2 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
  • Received:2016-06-10 Online:2016-09-30 Published:2016-09-30
  • Contact: Jeffery L. Twiss, M.D., Ph.D., twiss@mailbox.sc.edu
  • Supported by:

    Research in the authors’ laboratories that is related to the topic of this review has been supported by grants from the National Institutes of Health (R01-NS041596 and R01-NS089663 to JLT; P01-NS055976 to JDH), National Science Foundation (MCB-1020970 to JLT), Department of Defense/Congressionally Mandated Research Program (W81XWH-13-1-0308 to JLT), US-Israel Binational Science Foundation (2011329 to JLT), and Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (to JLT). Twiss is the incumbent South Carolina SmartState Chair in Childhood Neurotherapeutics at University of South Carolina.

摘要:

虽然最初不完全极化被认为是不成熟神经元的特征,但有明确证据表示周围神经系统中的神经元仍保持有轴突内蛋白质合成进入成年期的能力。这种局部蛋白质合成已被证明有助于周围神经中的损伤信号和轴突再生。最近的研究指出脊椎动物中枢神经系统轴突中蛋白质的合成潜力。mRNA和蛋白质合成机制现在在七鳃鳗模型,小鼠和大鼠脊髓轴突中已经有过研究。轴突内蛋白质合成似乎在成年脊椎动物脊髓轴突激活时是有能力再生的。再生为周围神经移植物的大鼠脊髓轴突包含活化转化机制的mRNA和标志物。实际上,在这些脊髓轴突中的一些生长相关mRNA水平与再生坐骨神经相当。当这些轴突停止生长时,主动翻译的标记物会逐渐减少,但可以通过二次轴突切除术来重新激活。这些最新的观察结果增加了mRNA转运到轴突内并在其中翻译的可能性,这有助于在周围和中枢神经系统中促进再生。

orcid: 0000-0001-7875-6682 (Jeffery L. Twis)

Abstract:

Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthesis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been documented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regenerating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regenerating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems.

Key words: mRNA transport, translational control, RNA binding protein, axon regeneration, spinal cord injury, peripheral nerve injury