中国神经再生研究(英文版) ›› 2021, Vol. 16 ›› Issue (10): 2017-2018.doi: 10.4103/1673-5374.308090

• 观点:退行性病与再生 • 上一篇    下一篇

非编码RNA和干细胞:帕金森病神经再生的理想团队?

  

  • 出版日期:2021-10-15 发布日期:2021-03-19

Non-coding RNAs and stem cells: the dream team for neural regeneration in Parkinson’s disease?

Shubhra Acharya, Andrew I. Lumley, Yvan Devaux*   

  1. Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg (Acharya S, Lumley AI, Devaux Y) Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg (Acharya S)
  • Online:2021-10-15 Published:2021-03-19
  • Contact: Yvan Devaux, PhD, yvan.devaux@lih.lu.
  • Supported by:
    This work is supported by COST (European Cooperation in Science and Technology) Action EU-CardioRNA CA17129, the National Research Fund of Luxembourg (grants # C14/BM/8225223, C17/BM/11613033 and AFR 14566210), the Ministry of Higher Education and Research of Luxembourg, and the Heart Foundation—Daniel Wagner.

摘要:

Neural Regen Res:创建非编码RNA和诱导型多能干细胞“梦之队”或许可以扭转与帕金森病的斗争

 

帕金森病是一种神经退行性运动障碍,全世界约有1000万人受到影响。它主要是由黑质多巴胺能神经元丢失引起的,多巴胺分泌减少导致震颤、运动迟缓和肌肉运动僵硬。目前的治疗策略主要是针对疾病症状,然而,由于大脑中多巴胺能神经元的持续缺失,帕金森病似乎无法治愈。治疗策略通常会带来与多巴胺产生相关的严重副作用,太少或太多都会导致诸如运动障碍之类的衰弱问题。位于脑室下区和海马齿状回的神经干/祖细胞池增殖,负责产生神经元和胶质细胞,以应对任何细胞损伤。虽然神经干细胞的这种激活是高度调节的,但不足以克服帕金森病中多巴胺能神经元的丢失。在这一点上,非编码RNA参与帕金森病的发病机制,并且在神经再生中具有重要的功能作用。因此,研究非编码RNA在帕金森病后神经干细胞激活和成人神经发生中的作用是一个极具吸引力的研究领域,具有重要的临床应用潜力。

来自卢森堡的Yvan Devaux博士及其团队认为需要新的治疗策略来提高帕金森病诊断后患者的预后和生活质量。内源性神经干细胞在帕金森病发作后受损,随后丧失了活化和自我更新的能力。诱导型多能干细胞使人们能够突破性地了解人体不同细胞群在疾病状态下的反应。通过这种方式,诱导型多能干细胞成为了研究疾病进展的理想平台,并且能够提供新治疗策略的疗效反馈。非编码RNA包括miRNAs和lncRNAs,在人类疾病中得到了广泛的研究。新的研究强调了非编码RNA作为工具的能力,可以通过它们的神经保护作用来操纵这些工具来实现神经发生。因此,非编码RNAs可能首先被用来激活内源性神经干细胞产生神经元,其次是阻止成熟神经元凋亡,克服帕金森病患者最初的缺失。这种方法也优于传统的多巴胺恢复疗法,因为它有助于克服产生多巴胺的神经元最初的丢失,并防止成熟神经元凋亡,从而应对帕金森病脑内多巴胺的失衡。创建一个所谓的“梦之队”,结合并利用非编码RNA和诱导型多能干细胞各自的优势,或许可以扭转与帕金森病的斗争。

相关观点文章在《中国神经再生研究(英文版)》杂志2021年 10 月 10  期发表。

https://orcid.org/0000-0002-5321-8543 (Yvan Devaux)

Abstract: Parkinson’s disease (PD) is a widely spread neurodegenerative movement disorder, affecting approximately 10 million people worldwide. It is primarily caused by the loss of dopaminergic neurons in the substantia nigra, which causes decreased secretion of dopamine leading to tremors, bradykinesia and rigid muscle movement. The development of PD is complex and needs to be better understood. Current treatment strategies primarily involve targeting disease symptoms, however, since there is a continuous loss of dopaminergic neurons in the brain, PD appears to be incurable. Moreover, treatment strategies often carry severe side effects related to dopamine production, where too little or too much can cause debilitating issues such as dyskinesia. The pool of neural stem/progenitor cells (NSCs) located in sub-ventricular zone and hippocampal dentate gyrus, proliferate and are responsible to give rise to neurons and glia in response to any cellular damage. Though this activation of NSCs is highly regulated, it is insufficient to overcome the loss of dopaminergic neurons in PD. In this line, non-coding RNAs (ncRNAs) are involved in the underlying mechanisms of PD and are known to have important functional roles in neural regeneration (Acharya et al., 2020). Thus, the study of ncRNAs in NSC activation and adult neurogenesis post PD development is an extremely attractive area of research with significant clinical application potential.