中国神经再生研究(英文版) ›› 2022, Vol. 17 ›› Issue (5): 987-988.doi: 10.4103/1673-5374.324835

• 观点:神经损伤修复保护与再生 • 上一篇    下一篇

中枢神经系统再生中的轴突蛋白合成:构建轴突是局部问题吗?

  

  • 出版日期:2022-05-15 发布日期:2021-11-08

Axonal protein synthesis in central nervous system regeneration: is building an axon a local matter?

Julia Schaeffer, Stephane Belin*   

  1. Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
  • Online:2022-05-15 Published:2021-11-08
  • Contact: Stephane Belin, PhD, stephane.belin@inserm.fr.
  • Supported by:
    JS was supported by a post-doctoral fellowship from Fondation pour la Recherche Médicale (FRM) (SPF201909009106). SB was supported by Agence Nationale pour la Recherche (ANR) (ANR-18-CE16-0007).

摘要: Neural Regen Res:轴突中促生长mRNA分类和翻译机制是未来研究的重点
与周围神经系统的神经元相反,成熟的中枢神经系统的神经元在病变后无法自发再生。虽然长期以来一直认为神经外环境是有限的,但大约15年前的证据表明,神经元本身是其自身再生的关键参与者。中枢神经系统神经元在成熟时和受伤后会失去轴突的生长能力。在发育过程中,神经元的生长高度依赖于轴突蛋白质组的快速适应。在这方面,局部蛋白质合成解释了轴突尖端生物材料的持续供应以及对环境的有效生长锥反应。
来自来自格勒诺布尔阿尔卑斯大学的Stephane Belin团队认为,受伤后,成熟的中枢神经系统轴突无法自发再生,特别是因为环境的生长抑制性质和内在生长能力下降。此外,成人周围神经系统与中枢神经系统神经元的不同再生潜能与局部蛋白质合成的动力学相关。因此,可能需要整合一个活跃的本地翻译程序来平衡生物材料轴突运输的能量成本,以获得轴突再生。周围神经系统的研究表明,轴突再生的几个关键步骤严重依赖有效的局部翻译。此外,轴突蛋白合成发生在完整的成熟中枢神经系统中,并在时空上受到调节以实现电路连通性和可塑性。未来的治疗策略将关注“局部再生库”,即轴突中促生长 mRNA的有效分类,以及翻译机制(包括核糖体)的存在和功能。
文章在《中国神经再生研究(英文版)》杂志2022年5月 5期发表。

Abstract: Neurons of the mature central nervous system (CNS, mainly the brain and spinal cord) are unable to regenerate spontaneously after a lesion, in contrast to neurons of the peripheral nervous system (PNS). While the extraneuronal environment was long thought to be limiting, evidence was given less than 15 years ago that neurons themselves are critical players of their own regeneration (Park et al., 2008). Indeed, CNS neurons show a decline of axon growth capacity as they mature and after an injury. Today, the role of axonal translation is actively explored in the paradigm of embryonic neuronal growth and in peripheral nerve injury and regeneration, but less is known about the role of local protein synthesis in regrowth of adult CNS axons. Here we discuss how the current understanding of axonal translation in the CNS may contribute to the development of novel strategies to enhance axon regeneration in the injured CNS.