中国神经再生研究(英文版) ›› 2025, Vol. 20 ›› Issue (10): 2915-2916.doi: 10.4103/NRR.NRR-D-24-00711

• 观点:退行性病与再生 • 上一篇    下一篇

超越神经变性:工程淀粉样蛋白用于生物催化

  

  • 出版日期:2025-10-15 发布日期:2025-02-08

Beyond neurodegeneration: engineering amyloids for biocatalysis

Andrea Bartolomé-Nafría, Javier García-Pardo* , Salvador Ventura*   

  1. Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain (Bartolomé-Nafría A, García-Pardo J, Ventura S) Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain (Ventura S)
  • Online:2025-10-15 Published:2025-02-08
  • Contact: Javier García-Pardo, PhD, javier.garcia.pardo@uab.cat; Salvador Ventura, PhD, salvador.ventura@uab.cat.

摘要: https://orcid.org/0000-0001-9179-6371 (Javier García-Pardo) https://orcid.org/0000-0002-9652-6351 (Salvador Ventura)

Abstract: Amyloid fibrils are highly organized protein or peptide aggregates, often characterized by a distinctive supramolecular cross-β-sheet structure. The formation and accumulation of these structures have been traditionally associated with neural or systemic human diseases, such as Alzheimer’s disease, Parkinson’s disease, type2 diabetes, or amyotrophic lateral sclerosis (Wei et al., 2017; Wittung-Stafshede, 2023). However, evidence exists that the amyloid fold is also exploited by nature to perform several functional, nonpathogenic roles across all kingdoms of life. For example, amyloids contribute to biofilm formation in bacteria (Peña‐Díaz et al., 2024) or are involved in the regulation of transcription and alternative splicing in humans. As a general trend, amyloids display highly rigid structures with high chemical and mechanical stability, which makes them ideal scaffolds for the design of novel nanostructured materials.