中国神经再生研究(英文版) ›› 2021, Vol. 16 ›› Issue (12): 2383-2387.doi: 10.4103/1673-5374.313015

• 综述:脑损伤修复保护与再生 • 上一篇    下一篇

精神病学指征以外的锂:一种新旧药物的转世

  

  • 出版日期:2021-12-15 发布日期:2021-05-13

Lithium beyond psychiatric indications: the reincarnation of a new old drug

Matteo Haupt, Mathias Bähr, Thorsten R. Doeppner*   

  1. University Medical Center Göttingen, Department of Neurology, Göttingen, Germany
  • Online:2021-12-15 Published:2021-05-13
  • Contact: Thorsten R. Doeppner, MD, MSc, thorsten.doeppner@med.uni-goettingen.de.

摘要:

Neural Regen Res: 神经精神疾病病理条件下锂诱导的神经保护

锂用于治疗双相情感障碍已有几十年的历史,但确切的作用机制至今仍不清楚。最近的证据表明,锂在影响细胞凋亡、炎症和神经发生的多种信号通路中起着关键作用,所有这些都参与了各种神经疾病的复杂病理生理学。临床前研究报告了在不同的神经疾病模型中急性和长期的神经保护作用,如帕金森病、创伤性脑损伤、阿尔茨海默病和缺血性中风。在帕金森病、创伤性脑损伤和阿尔茨海默病的实验条件下,锂治疗可减少细胞损伤,减少α-突触核蛋白聚集和Tau蛋白磷酸化,调节炎症,甚至刺激神经再生。锂在缺血性卒中条件下的治疗作用也在许多临床前体外和体内研究中得到了研究。临床前数据显示锂诱导抗凋亡蛋白如B细胞淋巴瘤2、热休克蛋白70和活化蛋白1上调,导致神经元细胞丢失减少。锂不仅产生缺血后神经保护作用,而且通过刺激神经干细胞增殖和调节不同的信号通路(如RE1沉默转录因子)增强内源性神经再生。与此相一致的是,锂治疗可以调节缺血后细胞因子的分泌模式,减少小胶质细胞的活化,稳定血脑屏障的完整性,从而降低神经炎症的水平。揭示了锂治疗后皮质卒中患者运动恢复的改善。除了众所周知的精神病适应证,锂是治疗上述神经系统疾病的有希望的神经保护候选物。

来自德国哥廷根大学医学中心的Thorsten R. Doeppner认为锂通过触发多种促生存机制,在不同的神经系统疾病中发挥多效性神经保护作用。这些机制的下游靶点主要影响细胞凋亡、炎症和神经发生的调节。个体信号通路依赖于神经精神疾病的病理生理学。缺血性卒中的临床前数据表明,锂诱导的神经保护可能与多种机制有关。尽管这些信号传导途径中的一些已经被揭示,但仍有许多问题没有得到解答。同样,在缺血性卒中和其他神经系统疾病的情况下获得更多的临床证据对于验证锂的治疗潜力非常重要。

文章在《中国神经再生研究(英文版)》杂志2021年 12 月 12 期发表。

https://orcid.org/0000-0002-1222-9211 (Thorsten R. Doeppner)

Abstract: Lithium has been used in the treatment of bipolar disorders for decades, but the exact mechanisms of action remain elusive to this day. Recent evidence suggests that lithium is critically involved in a variety of signaling pathways affecting apoptosis, inflammation, and neurogenesis, all of which contributing to the complex pathophysiology of various neurological diseases. As a matter of fact, preclinical work reports both acute and long-term neuroprotection in distinct neurological disease models such as Parkinson’s disease, traumatic brain injury, Alzheimer’s disease, and ischemic stroke. Lithium treatment reduces cell injury, decreases α‑synuclein aggregation and Tau protein phosphorylation, modulates inflammation and even stimulates neuroregeneration under experimental conditions of Parkinson’s disease, traumatic brain injury, and Alzheimer’s disease. The therapeutic impact of lithium under conditions of ischemic stroke was also studied in numerous preclinical in vitro and in vivo studies, giving rise to a randomized double-blind clinical stroke trial. The preclinic data revealed a lithium-induced upregulation of anti-apoptotic proteins such as B-cell lymphoma 2, heat shock protein 70, and activated protein 1, resulting in decreased neuronal cell loss. Lithium, however, does not only yield postischemic neuroprotection but also enhances endogenous neuroregeneration by stimulating neural stem cell proliferation and by regulating distinct signaling pathways such as the RE1-silencing transcription factor. In line with this, lithium treatment has been shown to modulate postischemic cytokine secretion patterns, diminishing microglial activation and stabilizing blood-brain barrier integrity yielding reduced levels of neuroinflammation. The aforementioned observations culminated in a first clinical trial, which revealed an improved motor recovery in patients with cortical stroke after lithium treatment. Beside its well-known psychiatric indications, lithium is thus a promising neuroprotective candidate for the aforementioned neurological diseases. A detailed understanding of the lithium-induced mechanisms, however, is important for prospective clinical trials which may pave the way for a successful bench-to-bedside translation in the future. In this review, we will give an overview of lithium-induced neuroprotective mechanisms under various pathological conditions, with special emphasis on ischemic stroke. 

Key words: Alzheimer’s disease, apoptosis, bench-to-bedside translation, inflammation, ischemic stroke, lithium, neurogenesis, neuroprotective agent, Parkinson’s disease, traumatic brain injury