Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (1): 76-82.doi: 10.3969/j.issn.1673-5374.2013.01.010
Previous Articles Next Articles
Tonglin Lu, Zhiping Hu, Liuwang Zeng, Zheng Jiang
Received:
2012-08-16
Revised:
2012-11-18
Online:
2013-01-05
Published:
2013-01-05
Contact:
Zhiping Hu, Doctoral supervisor, Professor, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China,huzhiping2007@yahoo.com.cn.
About author:
Tonglin Lu☆, Studying for doctorate.
Supported by:
This study was supported by the National Natural Science Foundation of China, No. 81171239, Frontier Research Project of Central South University in China, No. 2177-721500065, and the Graduate Degree Thesis Innovation Foundation of Central South University in China.
Tonglin Lu, Zhiping Hu, Liuwang Zeng, Zheng Jiang. Changes in secretory pathway Ca2+ -ATPase 2 following focal cerebral ischemia/reperfusion injury[J]. Neural Regeneration Research, 2013, 8(1): 76-82.
[1] Vanoevelen J, Dode L, Van Baelen K, et al. The secretory pathway Ca2+/Mn2+-ATPase 2 is a Golgi-localized pump with high affinity for Ca2+ ions. J Biol Chem. 2005;280(24):22800-22808.http://www.jbc.org/content/280/24/22800.long[2] Wuytack F, Raeymaekers L, Missiaen L. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium. 2002;32(5-6):279-305.http://www.sciencedirect.com/science/article/pii/S0143416002001847[3] Leitch S, Feng M, Muend S, et al. Vesicular distribution of Secretory Pathway Ca2+-ATPase isoform 1 and a role in manganese detoxification in liver-derived polarized cells. Biometals. 2011;24(1):159-170.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3238027/?tool=pubmed[4] Shull GE, Miller ML, Prasad V. Secretory pathway stress responses as possible mechanisms of disease involving Golgi Ca2+ pump dysfunction. Biofactors. 2011; 37(3):150-158.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338190/?tool=pubmed[5] Pavlíková M, Tatarková Z, Sivonová M, et al. Alterations induced by ischemic preconditioning on secretory pathways Ca2+-ATPase (SPCA) gene expression and oxidative damage after global cerebral ischemia/reperfusion in rats. Cell Mol. Neurobiol. 2009;29(6-7):909-916. http://www.springerlink.com/content/98844knr44t78j07/[6] Patel S, Muallem S. Acidic Ca (2+) stores come to the fore. Cell Calcium. 2011; 50(2):109-112. http://www.sciencedirect.com/science/article/pii/S0143416011000583[7] Vanoevelen J, Raeymaekers L, Dode L, et al. Cytosolic Ca2+ signals depending on the functional state of the Golgi in HeLa cells. Cell Calcium. 2005;38(5):489-495. http://www.sciencedirect.com/science/article/pii/S0143416005001260[8] Miseta A, Fu L, Kellermayer R, et al. The Golgi apparatus plays a significant role in the maintenance of Ca2+ homeostasis in the vps33D vacuolar biogenesis mutant of Saccharomyces cerevisiae. J Biol Chem. 1999;274(9):5939-5947.http://www.jbc.org/cgi/pmidlookup?view=long&pmid=10026219[9] Southall TD, Terhzaz S, Cabrero P, et al. Novel subcellular locations and functions for secretory pathway Ca2+/ Mn2+-ATPases. Physiol Genomics. 2006;26(1):35-45.http://physiolgenomics.physiology.org/content/26/1/35.long[10] Missiaen L, Dode L. Calcium in the Golgi apparatus. Cell Calcium. 2007;41(5):405-416.http://www.sciencedirect.com/science/article/pii/S0143416006002107[11] Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, et al. The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol. 2011; 3(5).http://cshperspectives.cshlp.org/cgi/pmidlookup?view=long&pmid=21441596[12] Baron S, Vangheluwe P, Sepúlveda MR, et al. The secretory pathway Ca(2+)- ATPase 1 is associated with cholesterol-rich microdomains of human colon adenocarcinoma cells. Biochim Biophys Acta. 2010;1798(8):1512-1521.http://www.sciencedirect.com/science/article/pii/S0005273610001227[13] Okunade GW, Miller ML, Azhar M, et al. Loss of the Atp2c1 secretory pathway Ca2+-ATPase (SPCA1) in mice causes golgi stress, apoptosis, and midgestational death in homozygous embryos and squamous cell tumors in adult heterozygotes. J Biol Chem. 2007;282(36):26517-26527.http://www.jbc.org/cgi/pmidlookup?view=long&pmid=17597066[14]Gennady Ermak, Kelvin JA. Davies. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol. 2002;38(10):713-721.http://linkinghub.elsevier.com/retrieve/pii/S0161589001001080[15] Davidson SM, Duchen MR. Duchen Calcium microdomains and oxidative stress. Cell Calcium. 2006 Nov-Dec;40(5-6):561-574.http://www.sciencedirect.com/science/article/pii/S0143416006001825[16]Bano D, Young KW, Guerin CJ, et al. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell. 2005;120(2):275-285.http://linkinghub.elsevier.com/retrieve/pii/S0092867404011560[17]Dolga AM, Terpolilli N, Kepura F, et al. Culmsee C KCa2 channels activation prevents [Ca2+] deregulation and reduces neuronal death following glutamate toxicity and cerebral ischemia. Cell Death Dis. 2011;2:e147.http://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21509037/?tool=pubmed[18]Lee BK, Jung YS. The Na+/H+ exchanger-1 inhibitor cariporide prevents glutamate-induced necrotic neuronal deathby inhibiting mitochondrial Ca2+ overload. J Neurosci Res. 2012;90(4):860-869.http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20BK%2C%20Jung%20YS.The%20Na%2B%2FH%2B%20exchanger-1%20inhibitor%20cariporide%20prevents%20glutamate-induced%20necrotic%20neuronal%20deathby%20inhibiting%20mitochondrial%20Ca2%2B%20overload.%20J%20Neurosci%20Res.%202012%20Apr%3B90(4)%3A860-9.[19] Lehotsky´ J, Kaplan P, Racay P, et al. Membrane ion transport systems during oxidative stress in rodent brain: protective effect of stobadine and other antioxidants. Life Sci. 1999;65(18-19):1951-1958.http://www.ncbi.nlm.nih.gov/pubmed?term=%20Lehotsky%C2%B4%20J%2C%20Kaplan%20P%2C%20Racay%20P%2C%20et%20al.%20Membrane%20ion%20transport%20systems%20during%20oxidative%20stress%20in%20rodent%20brain%3A%20protective%20effect%20of%20stobadine%20and%20other%20antioxidants.%20Life%20Sci%201999%3B65(18-19)%3A1951-8.[20]Lehotsky´ J, Kaplan P, Matejovicova M, et al. Ion transport systems as targets of free radicals during ischemia/reperfusion injury. Gen Physiol Biophys. 2002;21(1):31-37.http://www.gpb.sav.sk/2002_01_31.pdf[21]Ur?´kova´ A, Babus?´kova´ E, Dobrota D, et al. Impact of Ginkgo Biloba Extract EGb 761 on ischemia/reperfusion-induced oxidative stress products formation in rat forebrain. Cell Mol Neurobiol. 2006;26(7-8):1343-1353. http://dx.doi.org/10.1007/s10571-006-9030-3[22]He W, Hu Z, The role of the Golgi-resident SPCA Ca²?/Mn²? pump in ionic homeostasis and neural function. Neurochem Res. 2012;37(3):455-468.http://www.springerlink.com/content/g104j37236875x27/[23] Lehotsky J, Kaplán P, Murín R, et al. The role of plasma membrane Ca2+ pumps (PMCAs) in pathologies of mammalian cells. Front Biosci. 2002;7:d53-84.http://www.ncbi.nlm.nih.gov/pubmed?term=Lehotsky%C2%B4%20J%2C%20Kapla%C2%B4n%20P%2C%20Mur%C4%B1%C2%B4n%20R%2C%20et%20al.%20The%20role%20of%20plasma%20membrane%20Ca2%2B%20pumps%20(PMCAs)%20in%20pathologies%20of%20mammalian%20cells.%20Front%20Biosci%202002%20Jan%201%3B7%3Ad53-84.[24] Pavlíková M, Tatarková Z, Sivonová M, et al. Alterations Induced by Ischemic Preconditioning on Secretory Pathways Ca2+-ATPase (SPCA) Gene Expression and Oxidative Damage After Global Cerebral Ischemia/Reperfusion in Rats. Cell Mol Neurobiol. 2009;29(6-7):909-916.http://www.springerlink.com/content/98844knr44t78j07/[25] Jiang Z, Hu Z, Zeng L, et al. The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic Biol Med. 2011;50(8):907-917.http://www.sciencedirect.com/science/article/pii/S0891584911000311[26] Piantadosi CA, Zhang J. Mitochondrial Generation of Reactive Oxygen Species After Brain Ischemia in the Rat. Stroke. 1996;27(2):327-331; discussion 332.http://stroke.ahajournals.org/content/27/2/327.long[27]McNaughton RL, Reddi AR, Clement MH, et al. Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proc Natl Acad Sci U S A. 2010;107(35):15335-15339. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2932569/?tool=pubmed[28] Sanchez RJ, Srinivasan C, Munroe WH, et al. Exogenous manganous ion at millimolar levels rescues all known dioxygen-sensitive phenotypes of yeast lacking CuZnSOD. J Biol Inorg Chem. 2005;10(8):913-923.http://www.springerlink.com/content/p1g0t0x712510463/ [29]Golub MS, Hogrefe CE, Germann SL, et al. Neurobehavioral evaluation of rhesus monkey infants fed cow’s milk formula, soy formula, or soy formula with added manganese. Neurotoxicol Teratol. 2005;27(4):615-627.http://www.sciencedirect.com/science/article/pii/S0892036205000553[30] Luk EE, Culotta VC. Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J Biol Chem. 2001;276(50):47556-47562.http://www.jbc.org/content/276/50/47556.long[31] Wuytack F, Raeymaekers L, Missiaen L. PMR1/SPCA Ca2+ pumps and the role of the Golgi apparatus as a Ca2+ store. Pfluegers Arch. 2003;446(2):148-153.http://www.springerlink.com/content/g1v8q4ew3qxx8m64/[32] Zheng W, Ren S, Graziano JH. Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity. Brain Res. 1998;799(2):334-342.http://linkinghub.elsevier.com/retrieve/pii/S0006-8993(98)00481-8 [33] Dobson AW, Erikson KM, Aschner M. Manganese neurotoxicity. Ann N Y Acad. Sci. 2004;1012:115-128.http://onlinelibrary.wiley.com/doi/10.1196/annals.1306.009/abstract;jsessionid=45F5F3E39154AE669E18E0A760B4686B.d02t02[34] Gunter TE, Gavin CE, Aschner M, et al. Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity. Neurotoxicology. 2006;27(5):765-776.http://www.sciencedirect.com/science/article/pii/S0161813X06001112[35] Spranger M, Schwab S, Desiderato S, et al. Manganese augments nitric oxide synthesis in murine astrocytes: a new pathogenetic mechanism in manganism? Exp. Neurol. 1998;149(1):277-283.http://www.sciencedirect.com/science/article/pii/S0014488697966668[36] Milatovic D, Yin Z, Gupta RC, et al. Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol Sci. 2007;98(1):198-205.http://toxsci.oxfordjournals.org/content/98/1/198.long [37] Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 2003;23(12):5088-5095.http://www.jneurosci.org/content/23/12/5088.long[38]The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.http://www.zs-hospital.sh.cn/kycweb/zcwj/dwzxzcwj/2.pdf[39] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. 1989;20(1):84-91.http://stroke.ahajournals.org/content/20/1/84.long[40] Mari Mino-Kenudson, Lucian R. Chirieac, Kenny Law, et al. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res. 2010;16(5):1561-1571.http://clincancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=20179225 |
[1] | Liu-Lin Xiong, Jie Chen, Ruo-Lan Du, Jia Liu, Yan-Jun Chen, Mohammed Al Hawwas, Xin-Fu Zhou, Ting-Hua Wang, Si-Jin Yang, Xue Bai. Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage [J]. Neural Regeneration Research, 2021, 16(8): 1453-1459. |
[2] | Wan-Chao Yang, Hong-Ling Cao, Yue-Zhen Wang, Ting-Ting Li, Hong-Yu Hu, Qiang Wan, Wen-Zhi Li. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(8): 1574-1581. |
[3] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[4] | Meng-Shi Yang, Xiao-Jian Xu, Bin Zhang, Fei Niu, Bai-Yun Liu. Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(7): 1235-1243. |
[5] | Yi-An Zhan, Xin-Liang Qiu, Xu-Zhen Wang, Ning Zhao, Ke-Jian Qian. Reducing LncRNA-5657 expression inhibits the brain inflammatory reaction in septic rats [J]. Neural Regeneration Research, 2021, 16(7): 1288-1293. |
[6] | Martin A. Schick, Malgorzata Burek, Carola Y. Förster, Michiaki Nagai, Christian Wunder, Winfried Neuhaus. Hydroxyethylstarch revisited for acute brain injury treatment [J]. Neural Regeneration Research, 2021, 16(7): 1372-1376. |
[7] | Zi-Qi Shao, Shan-Shan Dou, Jun-Ge Zhu, Hui-Qing Wang, Chun-Mei Wang, Bao-Hua Cheng, Bo Bai. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regeneration Research, 2021, 16(6): 1044-1051. |
[8] | Qiu-Shi Gao, Ya-Han Zhang, Hang Xue, Zi-Yi Wu, Chang Li, Ping Zhao . Brief inhalation of sevoflurane can reduce glial scar formation after hypoxic-ischemic brain injury in neonatal rats [J]. Neural Regeneration Research, 2021, 16(6): 1052-1061. |
[9] | Jian Zhang, Ren-Jie Wang, Miao Chen, Xiao-Yin Liu, Ke Ma, Hui-You Xu, Wu-Sheng Deng, Yi-Chao Ye, Wei-Xin Li, Xu-Yi Chen, Hong-Tao Sun. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(6): 1068-1077. |
[10] | Muyue Yang, Zhen Yang, Pu Wang, Zhihui Sun. Current application and future directions of photobiomodulation in central nervous diseases [J]. Neural Regeneration Research, 2021, 16(6): 1177-1185. |
[11] | Mariam Rizk, Justin Vu, Zhi Zhang. Impact of pediatric traumatic brain injury on hippocampal neurogenesis [J]. Neural Regeneration Research, 2021, 16(5): 926-933. |
[12] | Magdalini Tsintou, Kyriakos Dalamagkas, Tara L. Moore, Yogesh Rathi, Marek Kubicki, Douglas L. Rosene, Nikos Makris. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches [J]. Neural Regeneration Research, 2021, 16(4): 605-613. |
[13] | Jayden Clark, Zhendan Zhu, Jyoti Chuckowree, Tracey Dickson, Catherine Blizzard. Efficacy of epothilones in central nervous system trauma treatment: what has age got to do with it? [J]. Neural Regeneration Research, 2021, 16(4): 618-620. |
[14] | Wang-Xia Wang, Paresh Prajapati, Hemendra J. Vekaria, Malinda Spry, Amber L. Cloud, Patrick G. Sullivan, Joe E. Springer. Temporal changes in inflammatory mitochondria-enriched microRNAs following traumatic brain injury and effects of miR-146a nanoparticle delivery [J]. Neural Regeneration Research, 2021, 16(3): 514-522. |
[15] | Emily N. Blanke, Gregory M. Holmes, Emily M. Besecker. Altered physiology of gastrointestinal vagal afferents following neurotrauma [J]. Neural Regeneration Research, 2021, 16(2): 254-263. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||