Neural Regeneration Research ›› 2013, Vol. 8 ›› Issue (2): 133-142.doi: 10.3969/j.issn.1673-5374.2013.02.005
Previous Articles Next Articles
Zhenli Mao1, 2, Zhenquan Song1, Gang Li3, Wei Lv1, 2, Xu Zhao1, 2, Bin Li1, 2, Xinli Feng1, Youli Chen1
Received:
2012-09-12
Revised:
2012-12-16
Online:
2013-01-15
Published:
2013-01-15
Contact:
Zhenquan Song, M.D., Professor, Chief physician, Master’s supervisor, Department of Neurosurgery, General Hospital of Shenyang Military Region, Shenyang 110016, Liaoning Province, China, szqlz@ 163.com.
About author:
Zhenli Mao★, Studying for master’s degree.
Supported by:
This project was funded by the Natural Science Foundation of Technology Department of Liaoning Province, No. 20032047.
Zhenli Mao, Zhenquan Song, Gang Li, Wei Lv, Xu Zhao, Bin Li, Xinli Feng, Youli Chen. 8-hydroxy-2-(di-n-propylamino)tetralin intervenes with neural cell apoptosis following diffuse axonal injury[J]. Neural Regeneration Research, 2013, 8(2): 133-142.
[1] Reynolds CA, Kallakuri S, Bagchi M, et al. Endothelin receptor A antagonism reduces the extent of diffuse axonal injury in a rodent model of traumatic brain injury. Neurol Res. 2011;33(2):192-196.http://dx.doi.org/10.1007/s00701-011-1002-9[2] Matsukawa H, Shinoda M, Fujii M, et al. Genu of corpus callosum in diffuse axonal injury induces a worse 1-year outcome in patients with traumatic brain injury. Acta Neurochir (Wien). 2011 Aug;153(8):1687-1693; discussion 1693-1694.http://www.springerlink.com/content/f63042677731h584/[3]Zhao CP, Qin JZ, Zhao GL, et al. Recent advances in the diagnosis and treatment of diffuse axonal injury. Zhonghua Shenjing Yixue Zazhi. 2009;8(10):1078-1080.http://lib.cqvip.com/qk/86533X/200910/31989026.html[4]Burke TF, Advani T, Adachi M, et al. Sensitivity of hippocampal 5-HT1A receptors to mild stress in BDNF-deficient mice. Int J Neuropsychopharmacol. 2012. [5]Singh M, Schwartz TL. Clinical utility of vilazodone for the treatment of adults with major depressive disorder and theoretical implications for future clinical use.Neuropsychiatr Dis Treat. 2012;8:123-130.[6]Burke TF, Advani T, Adachi M, Monteggia LM, Hensler JG. Sensitivity of hippocampal 5-HT1A receptors to mild stress in BDNF-deficient mice. Int J Neuropsychopharmacol. 2012. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8575490[7]Singh M, Schwartz TL. Clinical utility of vilazodone for the treatment of adults with major depressive disorder and theoretical implications for future clinical use.Neuropsychiatr Dis Treat. 2012;8:123-130.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3333788/[8] Ramos AJ, Rubio MD, Defagot C, et al. The 5HT1A receptor agonist, 8-OH-DPAT, protects neurons and reduces astroglial reaction after ischemic damage caused by cortical devascularization. Brain Res. 2004;1030(2):201-220.http://linkinghub.elsevier.com/retrieve/pii/S0006-8993(04)01663-4[9] Salazar-Colocho P, Del Río J, Frechilla D. Neuroprotective effects of serotonin 5-HT 1A receptor activation against ischemic cell damage in gerbil hippocampus: Involvement of NMDA receptor NR1 subunit and BDNF. Brain Res. 2008;1199:159-166.http://www.sciencedirect.com/science/article/pii/S0006899307029708[10] Alessandri B, Tsuchida E, Bullock RM. The neuroprotective effect of a new serotonin receptor agonist, BAY X3702, upon focal ischemic brain damage caused by acute subdural hematoma in the rat. Brain Res. 1999;845(2):232-235.http://linkinghub.elsevier.com/retrieve/pii/S0006-8993(99)01948-4[11] Mauler F, Fahrig T, Horváth E, et al. Inhibition of evoked glutamate release by the neuroprotective 5-HT(1A) receptor agonist BAY x 3702 in vitro and in vivo. Brain Res. 2001;888(1):150-157.http://linkinghub.elsevier.com/retrieve/pii/S0006-8993(00)03074-2[12] Bezard E, Gerlach I, Moratalla R, et al. 5-HT1A receptor agonist-mediated protection from MPTP toxicity in mouse and macaque models of Parkinson's disease. Neurobiol Dis. 2006;23(1):77-86.http://www.sciencedirect.com/science/article/pii/S0969996106000349[13]Audero E, Coppi E, Mlinar B, et al. Sporadic autonomic dysregulation and death associated with excessive serotonin autoinhibition.Science. 2008;321(5885):130-133. http://www.sciencemag.org/content/321/5885/130.long[14]Lo Iacono L, Gross C. Alpha-Ca2+/calmodulin-dependent protein kinase II contributes to the developmental programming of anxiety in serotonin receptor 1A knock-out mice. J Neurosci. 2008;28(24):6250-6257.http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=18550767[15]Yelleswarapu NK, Tay JK, Fryer WM, et al. Elucidating the role of 5-HT(1A) and 5-HT(7) receptors on 8-OH-DPAT-induced behavioral recovery after experimental traumatic brain injury. Neurosci Lett. 2012;515(2):153-156. http://linkinghub.elsevier.com/retrieve/pii/S0304-3940(12)00403-X[16]Schneider A, Teschendorf P, Vogel P, et al. Facilitation of hypothermia by quinpirole and 8-OH-DPAT in a rat model of cardiac arrest. Resuscitation. 2012;83(2):232-237.http://linkinghub.elsevier.com/retrieve/pii/S0300-9572(11)00460-6[17]Kline AE, Massucci JL, Dixon CE, et al. The therapeutic efficacy conferred by the 5-HT(1A) receptor agonist 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) after experimental traumatic brain injury is not mediated by concomitant hypothermia.J Neurotrauma. 2004;21(2):175-185.http://dx.doi.org/10.1089/089771504322778631[18]Marmarou A, Foda MA, van den Brink W, et al. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg. 1994;80(2):291-300. http://thejns.org/doi/abs/10.3171/jns.1994.80.2.0291?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed[19] Marazziti D, Marracci S, Palego L, et al. Localization and gene expression of serotonin 1A (5HT1A) receptors in human brain postmortem. Brain Res. 1994;658(1-2): 55-59.http://www.ncbi.nlm.nih.gov/pubmed?term=Localization%20and%20gene%20expression%20of%20serotonin%201A%20(5HT1A)%20receptors%20in%20human%20brain%20postmortem[20] Blackshear MA, Steranka LR, Sanders-Bush E. Multiple serotonin receptors: regional distribution and effect of Raphe lesions. Eur J Pharmacol. 1981;76(4):325-334.http://www.ncbi.nlm.nih.gov/pubmed?term=Multiple%20serotonin%20receptors%3A%20regional%20distribution%20and%20effect%20of%20Raphe%20lesions[21] Polter AM, Li X. 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal. 2010;22(10):1406-1412.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903656/[22] Rink A, Fung KM, Trojanowski JQ. et al.Evidence of apoptotic cell death after experimental traumatic brain injury in the rat.Am J Pathol. 1995;147:1575-1583.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1869937/[23] Yang XF, Wang H, Wen L. From myelin debris to inflammatory responses: a vicious circle in diffuse axonal injury. Med Hypotheses. 2011;77(1):60-62.http://linkinghub.elsevier.com/retrieve/pii/S0306-9877(11)00125-3[24] Lima RR, Guimaraes-Silva J, Oliveira JL, et al. Diffuse axonal damage, myelin impairment, astrocytosis and inflammatory response following microinjections of NMDA into the rat striatum. Inflammation. 2008;31(1):24-35.http://www.ncbi.nlm.nih.gov/pubmed?term=Diffuse%20axonal%20damage%2C%20myelin%20impairment%2C%20astrocytosis%20and%20inflammatory%20response%20following%20microinjections%20of%20NMDA%20into%20the%20rat%20striatum[25]YuanJ, YanknerBA. Apoptosis in the nervous system. Nature. 2000;407(6805):802-809.http://www.nature.com/nature/journal/v407/n6805/full/407802a0.html[26] Yu H, Liu WG. Caspase-3 and traumatic brain injury. Guoji Shenjingbingxue Shenjingwaikexue Zazhi. 2005;32(4):377-380http://www.cqvip.com/QK/94917A/200504/20492688.html[27]Clark RS, Kochanek PM, Watkins SC, et al. Caspase-3-medeiated neuronal death after traumatic brain injury in rats. J Neurochem. 2000;74(2):740-753.http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.2000.740740.x/abstract[28] Adayev T, Ray I, Sondhi R, et al. The G protein-coupled 5-HT1A receptor causes suppression of caspase-3 through MAPK and protein kinase Calpha. Biochim Biophys Acta. 2003;1640(1):85-96.http://www.sciencedirect.com/science/article/pii/S0167488903000235[29] Fiskum G. Mitochondrial participation in ischemic and traumatic neural cell death. J Neurotrauma. 2000;17(10):843-855.http://www.ncbi.nlm.nih.gov/pubmed?term=%22Journal+of+neurotrauma%22%5BJour%5D+AND+843%5Bpage%5D+AND+2000%5Bpdat%5D&cmd=detailssearch[30] Chen CJ, Cheng FC, Liao SL, et al. Effects of naloxone on lactate, pyruvate metabolism and antioxidant enzyme activity in rat cerebral ischemia/reperfusion. Neurosci Lett. 2000;287(2):113-116.http://www.sciencedirect.com/science/article/pii/S0304394000011514[31]Liu WG, Yang XF, Li G. Study on effect of Naloxone on apoptosis of neuron and expression of Bcl-2 Bax gene after severe brain injury. Zhonghua Shenjing Waike Zazhi. 2004;20(2):170-172.http://mall.cnki.net/magazine/Article/ZHSW200402038.htm[32] Hsiung SC, Tin A, Tamir H, et al. Inhibition of 5-HT1A receptor-dependent cell survival by cAMP/protein kinase A: role of protein phosphatase 2A and Bax. J Neurosci Res. 2008;86(10):2326-2338.http://dx.doi.org/10.1002/jnr.21676[33]Ox B, Kerwin RW, Lee TF, et al. A dopamine-5-hydroxytryptamine link in the hypothalamic pathways which mediate heat loss in the rat. J Physiol. 1980;303(6):9-21.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1282872/[34] Duncan WC, Johnson KA, Wehr TA. Antidepressant drug-induced hypothalamic cooling in Syrian hamsters. Neuropsychopharmacology. 1995;12(1):17-37.http://www.sciencedirect.com/science/article/pii/0893133X94000555[35] Gudelsky GA, Koenig JI, Meltzer HY. Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Neuropharmacology. 1986;25(12):1307-1313.http://www.ncbi.nlm.nih.gov/pubmed/2951611[36] Gudelsky GA, Koenig JI, Meltzer HY. Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Evidence for opposing roles of 5-HT2 and 5-HT1A receptors. Neuropharmacology. 1986;25(12):1307-1313.http://www.ncbi.nlm.nih.gov/pubmed/2951611 [37] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.http://oacu.od.nih.gov/regs/guide/guide4.htm |
[1] | Liu-Lin Xiong, Jie Chen, Ruo-Lan Du, Jia Liu, Yan-Jun Chen, Mohammed Al Hawwas, Xin-Fu Zhou, Ting-Hua Wang, Si-Jin Yang, Xue Bai. Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage [J]. Neural Regeneration Research, 2021, 16(8): 1453-1459. |
[2] | Gao-Jing Xu, Qun Zhang, Si-Yue Li, Yi-Tong Zhu, Ke-Wei Yu, Chuan-Jie Wang, Hong-Yu Xie, Yi Wu. Environmental enrichment combined with fasudil treatment inhibits neuronal death in the hippocampal CA1 region and ameliorates memory deficits [J]. Neural Regeneration Research, 2021, 16(8): 1460-1466. |
[3] | Stefan Kassumeh, Gregor R. Weber, Matthias Nobl, Siegfried G. Priglinger, Andreas Ohlmann. The neuroprotective role of Wnt signaling in the retina [J]. Neural Regeneration Research, 2021, 16(8): 1524-1528. |
[4] | Wan-Chao Yang, Hong-Ling Cao, Yue-Zhen Wang, Ting-Ting Li, Hong-Yu Hu, Qiang Wan, Wen-Zhi Li. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(8): 1574-1581. |
[5] | Yong-Bin Gao, Zhi-Gang Liu, Guo-Dong Lin, Yang Guo, Lei Chen, Bo-Tao Huang, Yao-Bin Yin, Chen Yang, Li-Ying Sun, Yan-Bo Rong, Shanlin Chen. Safety and efficacy of a nerve matrix membrane as a collagen nerve wrapping: a randomized, single-blind, multicenter clinical trial [J]. Neural Regeneration Research, 2021, 16(8): 1652-1659. |
[6] | Meng-Shi Yang, Xiao-Jian Xu, Bin Zhang, Fei Niu, Bai-Yun Liu. Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(7): 1235-1243. |
[7] | Dulce Parra-Villamar, Liliana Blancas-Espinoza, Elisa Garcia-Vences, Juan Herrera-García, Adrian Flores-Romero, Alberto Toscano-Zapien, Jonathan Vilchis Villa, Rodríguez Barrera-Roxana, Soria Zavala Karla, Antonio Ibarra, Raúl Silva-García. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury [J]. Neural Regeneration Research, 2021, 16(7): 1273-1280. |
[8] | Yi-An Zhan, Xin-Liang Qiu, Xu-Zhen Wang, Ning Zhao, Ke-Jian Qian. Reducing LncRNA-5657 expression inhibits the brain inflammatory reaction in septic rats [J]. Neural Regeneration Research, 2021, 16(7): 1288-1293. |
[9] | Min Wang, Juan-Juan Tang, Lin-Xiao Wang, Jun Yu, Li Zhang, Chen Qiao. Hydrogen sulfide enhances adult neurogenesis in a mouse model of Parkinson’s disease [J]. Neural Regeneration Research, 2021, 16(7): 1353-1358. |
[10] | Martin A. Schick, Malgorzata Burek, Carola Y. Förster, Michiaki Nagai, Christian Wunder, Winfried Neuhaus. Hydroxyethylstarch revisited for acute brain injury treatment [J]. Neural Regeneration Research, 2021, 16(7): 1372-1376. |
[11] | Zhe Cheng, Feng-Wu Li, Christopher R. Stone, Kenneth Elkin, Chang-Ya Peng, Redina Bardhi, Xiao-Kun Geng, Yu-Chuan Ding. Normobaric oxygen therapy attenuates hyperglycolysis in ischemic stroke [J]. Neural Regeneration Research, 2021, 16(6): 1017-1023. |
[12] | Zi-Qi Shao, Shan-Shan Dou, Jun-Ge Zhu, Hui-Qing Wang, Chun-Mei Wang, Bao-Hua Cheng, Bo Bai. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury [J]. Neural Regeneration Research, 2021, 16(6): 1044-1051. |
[13] | Qiu-Shi Gao, Ya-Han Zhang, Hang Xue, Zi-Yi Wu, Chang Li, Ping Zhao . Brief inhalation of sevoflurane can reduce glial scar formation after hypoxic-ischemic brain injury in neonatal rats [J]. Neural Regeneration Research, 2021, 16(6): 1052-1061. |
[14] | Jian Zhang, Ren-Jie Wang, Miao Chen, Xiao-Yin Liu, Ke Ma, Hui-You Xu, Wu-Sheng Deng, Yi-Chao Ye, Wei-Xin Li, Xu-Yi Chen, Hong-Tao Sun. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury [J]. Neural Regeneration Research, 2021, 16(6): 1068-1077. |
[15] | Giuseppe Cappellano, Domizia Vecchio, Luca Magistrelli, Nausicaa Clemente, Davide Raineri, Camilla Barbero Mazzucca, Eleonora Virgilio, Umberto Dianzani, Annalisa Chiocchetti, Cristoforo Comi. The Yin-Yang of osteopontin in nervous system diseases: damage versus repair [J]. Neural Regeneration Research, 2021, 16(6): 1131-1137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||