[1] Allis CD, Berger SL, Cote J, et al. New nomenclature for chromatin-modifying enzymes. Cell. 2007;131:633-636.[2] Yang M, Culhane JC, Szewczuk LM, et al. Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine. Biochemistry. 2007;46:8058-8065. [3] Forneris F, Binda C, Battaglioli E, et al. LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Trends Biochem Sci. 2008;33:181-189.[4] Nottke A, Colaiacovo MP, Shi Y. Developmental roles of the histone lysine demethylases. Development. 2009;136: 879-889.[5] Shi Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet. 2007;8:829-833.[6] Shi Y, Lan F, Matson C et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941-953.[7] Zibetti C, Adamo A, Binda C, et al. Alternative splicing of the histone demethylase LSD1/KDM1 contributes to the modulation of neurite morphogenesis in the mammalian nervous system. J Neurosci. 2010;30:2521-2532.[8] Wang J, Scully K, Zhu X, et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature. 2007;446:882-887.[9] Zibetti C, Adamo A, Binda C, et al. Alternative splicing of the histone demethylase LSD1/KDM1 contributes to the modulation of neurite morphogenesis in the mammalian nervous system. J Neurosci. 2010;30:2521-2532.[10] Pyati UJ, Look AT, Hammerschmidt M. Zebrafish as a powerful vertebrate model system for in vivo studies of cell death. Semin Cancer Biol. 2007;17:154-165. [11] Peterson RT, Shaw SY, Peterson TA, et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol. 2004;22:595-599.[12] Neely MN, Pfeifer JD, Caparon M. Streptococcus- zebrafish model of bacterial pathogenesis. Infect Immun. 2002;70:3904-3014.[13] Best JD, Alderton WK. Zebrafish: An in vivo model for the study of neurological diseases. Neuropsychiatr Dis Treat. 2008;4:567-576.[14] Kabashi E, Brustein E, Champagne N, et al. Zebrafish models for the functional genomics of neurogenetic disorders. Biochim Biophys Acta. 2011;1812:335-345.[15] Zhang J, Tan L, Hou JY, et al. Trans-2- phenylcyclopropylamine induces nerve cells apoptosis in zebrafish mediated by depression of LSD1 activity. Brain Res Bull. 2009;80:79-84.[16] Ingham PW. The power of the zebrafish for disease analysis. Hum Mol Genet. 2009;18:R107-112.[17] Abeliovich A, Flint Beal M. Parkinsonism genes: culprits and clues. J Neurochem. 2006;99:1062-1072.[18] Flinn L, Bretaud S, Lo C, et al. Zebrafish as a new animal model for movement disorders. J Neurochem. 2008;106: 1991-1997.[19] Bandmann O, Burton EA. Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis. 2010;40:58-65.[20] Baraban SC. Emerging epilepsy models: insights from mice, flies, worms and fish. Curr Opin Neurol 2007;20: 164-168.[21] Tiedeken JA, Ramsdell JS. DDT exposure of zebrafish embryos enhances seizure susceptibility: relationship to fetal p,p'-DDE burden and domoic acid exposure of California sea lions. Environ Health Perspect. 2009;117: 68-73.[22] Baraban SC, Dinday MT, Castro PA, et al. A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia. 2007;48:1151-1157.[23] Li YJ, Hu B. Establishment of multi-site infection model in zebrafish larvae for studying staphylococcus aureus infectious disease. J Genet Genomics. 2012;39:521-534. [24] Li Z, Zheng W, Wang Z, et al. An inducible Myc zebrafish liver tumor model revealed conserved Myc signatures with mammalian liver tumors. Dis Model Mech. in press.[25] Stead JD, Neal C, Meng F, et al. Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum. J Neurosci. 2006;26:345-353.[26] Ceballos-Chávez M, Rivero S, García-Gutiérrez P, et al. Control of neuronal differentiation by sumoylation of BRAF35, a subunit of the LSD1-CoREST histone demethylase complex. Proc Natl Acad Sci U S A. 2012; 109:8085-8090.[27] Fuentes P, Cánovas J, Berndt FA, et al. CoREST/LSD1 control the development of pyramidal cortical neurons. Cereb Cortex. 2012;22:1431-1441. [28] Zhang GR, Zhao H, Cao H, et al. Overexpression of either lysine-specific demethylase-1 or CLOCK, but not Co-Rest, improves long-term expression from a modified neurofilament promoter, in a helper virus-free HSV-1 vector system. Brain Res. 2012;1436:157-167.[29] Wang X, Babayan AH, Basbaum AI, et al. Loss of the Reelin-signaling pathway differentially disrupts heat, mechani-cal and chemical nociceptive processing. Neuroscience. 2012;226C:441-450.[30] Arancha BL , Inmaculada CL , Tiziana C, et al. be-amyloid controls altered Reelin expression and processing in Alzheimer's disease. Neurobiol Dis. 2010;37:682-691.[31] Costa E, Davis J, Grayson DR, et al. Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol Dis. 2001;8:723-742.[32] Niu S, Renfro A, Quattrocchi CC, et al. Reelin promotes hippocampal dendrite development through the VLDLR/ ApoER2-Dab1 pathway. Neuron. 2004;41:71-84.[33] Schmid RS, Jo R, Shelton S, et al. Reelin, integrin and DAB1 interactions during embryonic cerebral cortical development. Cereb Cortex. 2005;15:1632-1636.[34] Weeber EJ, Beffert U, Jones C, et al. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem. 2002;277: 39944-39952.[35] Kvajo M , McKellar H, Gogos JA, et al. Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience. 2012;211:136-164.[36] Fatemi SH, Earle JA, McMenomy T. Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry. 2000;5:654-663,571.[37] Spencer KM, Nestor PG, Perlmutter R, et al. Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci U S A. 2004;101: 17288-17293.[38] O'Brien LL, Grimaldi M, Kostun Z, et al. Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Dev Biol. 2011;358:318-330.[39] Zhang L, Widau RC, Herring BP, et al. Delta-like 1-Lysine613 regulates notch signaling. Biochim Biophys Acta. 2011;1813:2036-2043.[40] Westerfield M. The Zebrafish Book. 5th ed. Eugene, OR: University of Oregon. 2007. |