中国神经再生研究(英文版) ›› 2013, Vol. 8 ›› Issue (6): 561-568.doi: 10.3969/j.issn.1673-5374.2013.06.010

• 原著:脑损伤修复保护与再生 • 上一篇    下一篇

颞叶内侧癫痫患者海马硬化区神经元氯离子的稳态失衡

  

  • 收稿日期:2012-10-22 修回日期:2013-01-07 出版日期:2013-02-25 发布日期:2013-02-25

Anomalous expression of chloride transporters in the sclerosed hippocampus of mesial temporal lobe epilepsy patients

Xiaodong Cai1, Libai Yang1, Jueqian Zhou1, Dan Zhu2, Qiang Guo2, Ziyi Chen1, Shuda Chen1, Liemin Zhou1   

  1. 1 Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
    2 Department of Neurosurgery, Guangdong 999 Brain Hospital, Guangzhou 510510, Guangdong Province, China
  • Received:2012-10-22 Revised:2013-01-07 Online:2013-02-25 Published:2013-02-25
  • Contact: Liemin Zhou, Ph.D., Professor, Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China, zhouliemin@yahoo.com.cn.
  • About author:Xiaodong Cai☆, Studying for doctorate.
  • Supported by:

    This study was supported by the Science and Technology Foundation of Guangdong Province, No. 2008B060600063; the National Natural Science Foundation of China, No. 81071050; and the Natural Science Foundation of Guangdong Province, No. S2011020005483.

摘要:

钠钾氯共转运体1蛋白和钾氯共转运体2蛋白是维持海马神经元细胞内氯离子浓度稳态的一对重要调节蛋白,与颞叶内侧癫痫的发生机制有关,也被认为是导致癫痫样放电的原因之一。鉴于此,实验观察了颞叶内侧癫痫患者海马硬化区钠钾氯共转运体1蛋白和钾氯共转运体2蛋白的表达。运用免疫组织化学及Western blot方法检测发现,与正常海马组织比较,硬化海马区钠钾氯共转运体1蛋白的表达增高,尤以CA2区和齿状回区改变明显。另外,钾氯共转运体2蛋白的表达降低,但不如钠钾氯共转运体1蛋白的表达改变明显。结果证实,硬化海马区钠钾氯共转运体1蛋白和钾氯共转运体2蛋白的表达变化,可能会引起细胞内外氯离子浓度的稳态失衡,是导致细胞高兴奋性甚至痫性发作的原因,其中钠钾氯共转运体1蛋白可能是主要原因。该实验结果或许会为伴海马硬化的颞叶内侧癫痫的治疗提供一条新的思路。

关键词: 神经再生, 脑损伤, 颞叶内侧癫痫, 海马硬化, 钠钾氯共转运体1蛋白, 钾氯共转运体2蛋白, γ-氨基丁酸, 氯离子, 齿状回, CA2区, 基金资助文章

Abstract:

The Na+-K+-Cl– cotransporter 1 and K+-Cl– cotransporter 2 regulate the levels of intracellular chloride in hippocampal cells. Impaired chloride transport by these proteins is thought to be involved in the pathophysiological mechanisms of mesial temporal lobe epilepsy. Imbalance in the relative expression of these two proteins can lead to a collapse of Cl– homeostasis, resulting in a loss of gamma-aminobutyric acid-ergic inhibition and even epileptiform discharges. In this study, we investigated the expression of Na+-K+-Cl– cotransporter 1 and K+-Cl– cotransporter 2 in the sclerosed hippocampus of patients with mesial temporal lobe epilepsy, using western blot analysis and immunohistochemistry. Compared with the histologically normal hippocampus, the sclerosed hippocampus showed increased Na+-K+-Cl– cotransporter 1 expression and decreased K+-Cl– cotransporter 2 expression, especially in CA2 and the dentate gyrus. The change was more prominent for the Na+-K+-Cl– cotransporter 1 than for the K+-Cl– cotransporter 2. These experimental findings indicate that the balance between intracellular and extracellular chloride may be disturbed in hippocampal sclerosis, contributing to the hyperexcitability underlying epileptic seizures. Changes in Na+-K+-Cl– cotransporter 1 expression seems to be the main contributor. Our study may shed new light on possible therapies for patients with mesial temporal lobe epilepsy with hippocampal sclerosis.

Key words: neural regeneration, brain injury, mesial temporal lobe epilepsy, hippocampal sclerosis, sodium-potassium chloride cotransporter 1, potassium chloride cotransporter 2, gamma-aminobutyric acid, chloride ion, dentate gyrus, CA2 region, human, grants-supported paper, photographs-containing paper, neuroregeneration