中国神经再生研究(英文版) ›› 2017, Vol. 12 ›› Issue (10): 1724-1732.doi: 10.4103/1673-5374.217354

• 综述:脊髓损伤修复保护与再生 • 上一篇    下一篇

神经胶质细胞在损伤脊髓髓鞘再生过程中的作用

  

  • 收稿日期:2017-09-14 出版日期:2017-10-15 发布日期:2017-10-15
  • 基金资助:

    国家自然科学基金(81601957)

 Effect of glial cells on remyelination after spinal cord injury

Hai-feng Wang1, Xing-kai Liu2, Rui Li3, Ping Zhang2, Ze Chu4, Chun-li Wang2, Hua-rui Liu2, Jun Qi2, Guo-yue Lv2, Guang-yi Wang2, Bin Liu5, Yan Li6, Yuan-yi Wang7   

  1. 1 Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin Province, China
    2 Department of Hepatobiliary and Pancreas Surgery, First Hospital of Jilin University, Changchun, Jilin Province, China
    3 Hand & Foot Surgery and Reparative & Reconstruction Surgery Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
    4 Department of Emergency, First Hospital of Jilin University, Changchun, Jilin Province, China
    5 Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin Province, China
    6 Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
    7 Department of Orthopedics, First Hospital of Jilin University, Changchun, Jilin Province, China
  • Received:2017-09-14 Online:2017-10-15 Published:2017-10-15
  • Contact: Yuan-yi Wang, M.D. or Bin Liu, M.D., tedwangyy@foxmail.com or 1466802342@qq.com,359382923@qq.com.
  • Supported by:

    This work was supported by the National Natural Science Foundation of China, No. 81601957.

摘要:

髓鞘再生在脊髓损伤后的轴突功能恢复中起重要作用。胶质细胞是中枢神经系统中含量最多的细胞,脊髓损伤发生后,损伤周围的胶质细胞立即被激活,而不同的细胞则对损伤后炎症反应有不同的影响。少突胶质细胞前体细胞是构成髓鞘的前体细胞,在这篇综述中,我们讨论了少突胶质细胞前体细胞在髓鞘再生中的核心作用和其他类型胶质细胞在髓鞘再生阶段的相互作用,脊髓损伤后激活的星形胶质细胞可以影响少突胶质细胞前体细胞的增殖、分化以及成熟,而小胶质细胞则通过调节炎症反应来影响髓鞘再生。因此,了解少突胶质细胞前体细胞和其他胶质细胞间的相互作用,对制定脊髓损伤后的髓鞘再生的治疗方案十分重要。

orcid:0000-0002-6163-5144(Yuan-yi Wang)    0000-0007-7182-8644(Bin Liu)

关键词:  神经再生, 脊髓损伤, 髓鞘再生, 少突胶质细胞前体细胞, 少突胶质细胞, 星形胶质细胞, 小胶质细胞, 胶质瘢痕, 脱髓鞘, 髓鞘, 中枢神经系统

Abstract:

Remyelination plays a key role in functional recovery of axons after spinal cord injury. Glial cells are the most abundant cells in the central nervous system. When spinal cord injury occurs, many glial cells at the lesion site are immediately activated, and different cells differentially affect inflammatory reactions after injury. In this review, we aim to discuss the core role of oligodendrocyte precursor cells and crosstalk with the rest of glia and their subcategories in the remyelination process. Activated astrocytes influence proliferation, differentiation, and maturation of oligodendrocyte precursor cells, while activated microglia alter remyelination by regulating the inflammatory reaction after spinal cord injury. Understanding the interaction between oligodendrocyte precursor cells and the rest of glia is necessary when designing a therapeutic plan of remyelination after spinal cord injury.

Key words: nerve regeneration, spinal cord injury, remyelination, oligodendrocyte precursor cells, astrocytes, oligodendrocytes, microglia, glial scar, demyelination, myelin, central nervous system, neural regeneration